scholarly journals Centrifuge modelling of the use of discretely-spaced energy pile row to reinforce unsaturated silt

Géotechnique ◽  
2021 ◽  
pp. 1-44
Author(s):  
Davide Vitali ◽  
Anthony K. Leung ◽  
Song Feng ◽  
Jonathan A. Knappett ◽  
Li Ma
2021 ◽  
Author(s):  
Badr Ouzzine ◽  
Jean de Sauvage ◽  
Iheb Ghandri ◽  
Giulia Viggiani ◽  
Gopal Madabhushi

<p>The growing energy needs of urban areas and the current environmental context have led to the development of new energy technologies. Since the 1980s, energy geo-structures have been developed and applied, in which heat exchanger pipes are attached to the reinforcement cages of geotechnical structures such as pile foundations or diaphragm walls. By circulating a heat transfer fluid in these pipes, and using a heat pump, these low-enthalpy solutions make it possible to produce heating and cooling with significantly reduced CO<sub>2</sub> emissions. However, the cyclic thermal loading generates stresses and strains in the geo-structure and in the surrounding soil, due to thermal expansion. Research on the behaviour of energy pile groups is rather limited, particularly for piled foundations in which only a few piles within a group are thermally activated. Indeed, the implementation of this type of energy technology is slow because of the many concerns about the impact of thermal cycles on the mechanical behaviour of the piles. The complexity of this problem is increased if a natural groundwater flow is present, as this has the potential to affect significantly heat transfer between piles in the group.</p><p>To tackle these questions, the stresses induced in pile groups by thermal activation were studied by geotechnical centrifuge modelling.  Two reduced scale models of 2*2 pile groups were examined, one in dry and one in saturated Hostun sand. In the tests, only one pile was subjected to cyclic thermal loading, but all the pile heads were connected to the same raft. The model piles were cast in cement and copper pipes were used to model simultaneously the reinforcement cages and the heat exchanger pipes. This modelling highlighted that, when heated, the energy pile goes into additional compression along with the diagonally opposite pile, due to the raft rotation. The other two thermally inactive piles showed a decrease of axial load. The saturation of the sand layer displayed a strong role not only on the transient response, but also on the thermal equilibrium due to additional thermal inertia.</p><p>In order to make relevant comparisons between the observations made on the reduced scale models and those made at prototype scale, scaling laws must be respected, so that the model and the full-scale structure undergo the same physical phenomena. Therefore, preliminary theoretical work was carried out to examine the various thermal phenomena involved. For each phenomenon of interest, the quantities that allow keeping dimensionless numbers identical or at least of the same order of magnitude are studied. Some phenomena were verified also numerically or experimentally. This work is presented in the form of a catalog of scaling laws derived for both mechanical and thermal behaviour of pile foundations.</p>


2021 ◽  
Vol 1838 (1) ◽  
pp. 012061
Author(s):  
Qihui Zhou ◽  
Zhanjun Huang ◽  
Yong Wu ◽  
Huipeng Zhang ◽  
Yufeng Shi ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3873
Author(s):  
Guozhu Zhang ◽  
Ziming Cao ◽  
Yiping Liu ◽  
Jiawei Chen

Investigation on the long-term thermal response of precast high-strength concrete (PHC) energy pile is relatively rare. This paper combines field experiments and numerical simulations to investigate the long-term thermal properties of a PHC energy pile in a layered foundation. The major findings obtained from the experimental and numerical studies are as follows: First, the thermophysical ground properties gradually produce an influence on the long-term temperature variation. For the soil layers with relatively higher thermal conductivity, the ground temperature near to the energy pile presents a slowly increasing trend, and the ground temperature response at a longer distance from the center of the PHC pile appears to be delayed. Second, the short- and long-term thermal performance of the PHC energy pile can be enhanced by increasing the thermal conductivity of backfill soil. When the thermal conductivities of backfill soil in the PHC pile increase from 1 to 4 W/(m K), the heat exchange amounts of energy pile can be enhanced by approximately 30%, 79%, 105%, and 122% at 1 day and 20%, 47%, 59%, and 66% at 90 days compared with the backfill water used in the site. However, the influence of specific heat capacity of the backfill soil in the PHC pile on the short-term or long-term thermal response can be ignored. Furthermore, the variation of the initial ground temperature is also an important factor to affect the short-and-long-term heat transfer capacity and ground temperature variation. Finally, the thermal conductivity of the ground has a significant effect on the long-term thermal response compared with the short-term condition, and the heat exchange rates rise by about 5% and 9% at 1 day and 21% and 37% at 90 days as the thermal conductivities of the ground increase by 0.5 and 1 W/(m K), respectively.


2021 ◽  
Vol 27 ◽  
pp. 101313
Author(s):  
Di Wu ◽  
Gangqiang Kong ◽  
Hanlong Liu ◽  
Qiang Jiang ◽  
Qing Yang ◽  
...  

2010 ◽  
Vol 14 (9) ◽  
pp. 2683-2696 ◽  
Author(s):  
Monique de Moel ◽  
Peter M. Bach ◽  
Abdelmalek Bouazza ◽  
Rao M. Singh ◽  
JingLiang O. Sun

2017 ◽  
Vol 31 (3) ◽  
pp. 06017001 ◽  
Author(s):  
Yonghui Chen ◽  
Jie Xu ◽  
Hang Li ◽  
Long Chen ◽  
Charles W. W. Ng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document