scholarly journals Discussion: An alinement chart for the evaluation of the dynamic modulus of elasticity and Poisson's ratio for concrete

1956 ◽  
Vol 8 (23) ◽  
pp. 126-128 ◽  
Author(s):  
W. H. King ◽  
I. D. G. Lee ◽  
J. C. Simmons
2019 ◽  
Vol 292 ◽  
pp. 50-55 ◽  
Author(s):  
Romana Halamová ◽  
Dalibor Kocáb ◽  
Barbara Kucharczyková ◽  
Petr Misák ◽  
Martin Alexa

The paper deals with the influence of the Poisson’s ratio on the calculated modulus of elasticity of a cementitious composite in the early stage of its ageing. The dynamic modulus of elasticity was determined in the first 24 hours of ageing of the material using the Vikasonic ultrasonic device. Within the experiment, two types of cementitious composites were mixed - cement paste and cement mortar, both having the same water/cement ratio. It is presumed that the value of the dynamic modulus of elasticity calculated on the basis of ultrasonic measurement is closely related to the value of the Poisson’s ratio, which is not constant during ageing of the cementitious composite but varies depending on the degree of hydration of the material. The output of the paper is a comparison of the development of the dynamic modulus of elasticity calculated using different values of the Poisson’s ratio.


Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 104
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
António C. Azevedo ◽  
Tahlaiti Mahfoud ◽  
Abdelhafid Khelidj ◽  
...  

Early deterioration of reinforced concrete foundations has been often reported in recent years. This process is usually characterized by an extensive mapping cracking process on concrete surfaces that results from several types of Internal Swelling Reaction (ISR). In this paper, a real case study of a tall reinforced concrete building with a severe deterioration process installed in its deep foundations is discussed. Laboratory tests were performed in concrete drilled cores extracted from a deep pile cap block 19 years after the beginning of construction. Tests to assess the compressive strength, the static and the dynamic modulus of elasticity, the gas permeability, and electron microscopy scanning to find out the primary mechanism responsible for the deterioration observed during in situ inspections. Chemical alterations of materials were observed in concrete cores, mainly due to Delayed Ettringite Formation (DEF), which significantly affected the integrity and durability of the structure. Dynamic modulus of elasticity showed to be a better indicator of damage induced by ISR in concrete than compressive strength. Procedures to strengthen the deteriorated elements using prestressing proved to be an efficient strategy to recover the structural integrity of pile caps deteriorated due to expansions due to ISR.


Author(s):  
Serge Abrate

The behavior of functionally graded structures has received a great deal of attention in recent years. Usually, these structures are made out of a composite material with a modulus of elasticity, a Poisson’s ratio, and a density that vary through the thickness. The non-uniformity through the thickness introduces coupling between the transverse deformations and the deformations of the mid-surface. Previous publications have shown how to account for these added complexities and have presented extensive results in tabular form. In this article, available results are used to show that the behavior of functionally graded shells is similar to that of homogeneous isotropic shells. It is well known that for isotropic shells, results can be presented in non-dimensional form so that, once results are obtained for one material, they can be simply scaled to obtain the corresponding results for shells made out of another material. The same can then be done for functionally graded shells. In addition, if functionally graded shells behave like homogeneous shells, no new method of analysis is required. The second part of the paper examines why this is true.


Holzforschung ◽  
2007 ◽  
Vol 61 (4) ◽  
pp. 414-418 ◽  
Author(s):  
Cheng-Jung Lin ◽  
Ming-Jer Tsai ◽  
Chia-Ju Lee ◽  
Song-Yung Wang ◽  
Lang-Dong Lin

Abstract The effects of ring characteristics on the compressive strength and dynamic modulus of elasticity of seven softwood species in Taiwan were examined. The results revealed good correlation between compressive strength and dynamic modulus of elasticity obtained using an ultrasonic wave technique (correlation coefficient r=0.77–0.86). Overall, compressive strength increased with decreasing ring width parameters and increasing ring density parameters. Ring density was related to compressive strength, but was not the sole factor affecting the wood strength. According to our statistical analysis, compressive strength was affected by various ring characteristics. Relationships between ring characteristics and compressive strength are influenced by the anatomic direction. Results revealed that earlywood density and minimum density in a ring are equally important variables for evaluating the compressive strength of wood.


1942 ◽  
Vol 9 (3) ◽  
pp. A129-A135
Author(s):  
C. O. Harris

Abstract The purpose of the investigation described in this paper was to obtain information concerning the dynamic properties of rubber bonded to metal. Two properties of rubber were measured (a) the internal damping and (b) the dynamic modulus of elasticity. Two types of specimens were tested (a) rubber cylinders bonded to steel cylinders at the ends and stressed in compression and (b) specimens of rubber bonded to steel and stressed in shear. All specimens were of the same stock, 5140-V-4, manufactured by the U. S. Rubber Company. The hardness, as measured by the durometer, varied from 32 to 40. In the process of bonding to the steel, a 1/32-in. layer of 60-durometer stock was added adjacent to each piece of steel. This represents standard practice of the U. S. Rubber Company in bonding soft stock to metal. All specimens were cured for 30 min at 279 F.


Sign in / Sign up

Export Citation Format

Share Document