scholarly journals Vitamin E Attenuates Oxidative Stress Induced by Intravenous Iron in Patients on Hemodialysis

2000 ◽  
Vol 11 (3) ◽  
pp. 539-549
Author(s):  
JOHANNES M. ROOB ◽  
GHOLAMALI KHOSCHSORUR ◽  
ANDREAS TIRAN ◽  
JÖRG H. HORINA ◽  
HERWIG HOLZER ◽  
...  

Abstract. Intravenous iron application to anemic patients on hemodialysis leads to an “oversaturation” of transferrin. As a result, non-transferrin-bound, redox-active iron might induce lipid peroxidation. To test the hypothesis that vitamin E attenuates lipid peroxidation in patients receiving 100 mg of iron(II) hydroxide sucrose complex intravenously during a hemodialysis session, 22 patients were investigated in a randomized cross-over design, either with or without a single oral dose of 1200 IU of all-rac-α-tocopheryl acetate taken 6 h before the hemodialysis session. Blood was drawn before and 30, 60, 90, 135, and 180 min after the start of the iron infusion, and areas under the curve (AUC0-180 min) of ratios of plasma malondialdehyde (MDA) to cholesterol and plasma total peroxides to cholesterol (two markers of lipid peroxidation) were determined as the outcome variables. At baseline of the session without vitamin E supplementation, plasma α-tocopherol concentrations (27.6 ± 1.8 μmol/L) and ratios of α-tocopherol to cholesterol (5.88 ± 1.09 mmol/mol) were normal, plasma MDA concentrations were above normal (1.20 ± 0.28 μmol/L), and bleomycin-detectable iron (BDI), indicating the presence of redox-active iron, was not detectable. Upon iron infusion, BDI and MDA concentrations increased significantly (P < 0.001). BDI concentrations explained the increase over baseline in MDA concentrations (MDA = 1.29 + 0.075 × BDI). Vitamin E supplementation, leading to a 68% increase in plasma α-tocopherol concentrations, significantly reduced the AUC0-180 min of MDA to cholesterol (P = 0.004) and peroxides to cholesterol (P = 0.002). These data demonstrate that a single oral dose of vitamin E attenuates lipid peroxidation in patients on hemodialysis receiving intravenous iron. Given that intravenous iron is applied repeatedly to patients on hemodialysis, this therapeutic approach may protect against oxidative stress-related degenerative disease in the long term.

1997 ◽  
Vol 83 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Chandan K. Sen ◽  
Mustafa Atalay ◽  
Jyrki Ågren ◽  
David E. Laaksonen ◽  
Sashwati Roy ◽  
...  

Sen, Chandan K., Mustafa Atalay, Jyrki Ågren, David E. Laaksonen, Sashwati Roy, and Osmo Hänninen. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise. J. Appl. Physiol.83(1): 189–195, 1997.—Fish oil supplementation and physical exercise may induce oxidative stress. We tested the effects of 8 wk of α-tocopherol (vitamin E) and fish oil (FO) supplementation on resting and exercise-induced oxidative stress. Rats ( n = 80) were divided into groups supplemented with FO, FO and vitamin E (FOVE), soy oil (SO), and SO and vitamin E (SOVE), and for FOVE and SOVE they were divided into corresponding exercise groups (FOVE-Ex and SOVE-Ex). Lipid peroxidation [thiobarbituric acid-reacting substances (TBARS)] was 33% higher in FO compared with SO in the liver, but oxidative protein damage (carbonyl levels) remained similar in both liver and red gastrocnemius muscle (RG). Vitamin E supplementation, compared with FO and SO, markedly decreased liver and RG TBARS, but liver TBARS remained 32% higher in FOVE vs. SOVE. Vitamin E also markedly decreased liver and RG protein carbonyl levels, although levels in FOVE and SOVE were similar. Exercise increased liver and RG TBARS and RG protein carbonyl levels markedly, with similar levels in FOVE-Ex and SOVE-Ex. FO increased lipid peroxidation but not protein oxidation in a tissue-specific manner. Vitamin E markedly decreased lipid peroxidation and protein oxidation in both FOVE and SOVE, although liver lipid peroxidation remained higher in FOVE. Despite higher levels of hepatic lipid peroxidation at rest in FOVE compared with SOVE, liver appeared to be relatively less susceptible to exercise-induced oxidative stress in FOVE.


2011 ◽  
Vol 60 (07) ◽  
pp. 459-465
Author(s):  
Brigitte Sturm ◽  
Hannes Steinkellner ◽  
Nina Ternes ◽  
Hans Goldenberg ◽  
Barbara Scheiber-Mojdehkar

2003 ◽  
Vol 73 (4) ◽  
pp. 290-296 ◽  
Author(s):  
Badiou ◽  
Cristol ◽  
Morena ◽  
Bosc ◽  
Carbonneau ◽  
...  

Background: Oxidative stress and alterations in lipid metabolism observed in hemodialysis patients potentiate the low-density lipoprotein (LDL) oxidability, recognized as a key event during early atherogenesis. Objective: To explore the effects of an oral vitamin E supplementation on oxidative stress markers and LDL oxidability in hemodialysis patients. Methods: Fourteen hemodialysis patients and six healthy volunteers were given oral vitamin E (500 mg/day) for six months. Oxidative stress was assessed using: plasma and lipoprotein vitamin E levels [high-performance liquid chromatography (HPLC) procedure]; thiobarbituric acid reactive substances (TBARS, Yaggi method); and copper-induced LDL oxidation. All parameters were evaluated before initiation of vitamin E supplementation, and at three and six months thereafter. Results: At baseline, a significantly higher TBARS concentration and a higher LDL oxidability were observed in hemodialysis patients when compared to controls. After six months of vitamin E supplementation, TBARS and LDL oxidability were normalized in hemodialysis patients. Conclusion: Our data confirm that hemodialysis patients are exposed to oxidative stress and increased susceptibility to ex vivo LDL oxidation. Since oral vitamin E supplementation prevents oxidative stress and significantly increases LDL resistance to ex vivo oxidation, supplementation by natural antioxidants such as vitamin E may be beneficial in hemodialysis patients.


Sign in / Sign up

Export Citation Format

Share Document