scholarly journals Human Immunodeficiency Virus-1 Induces Loss of Contact Inhibition in Podocytes

2001 ◽  
Vol 12 (8) ◽  
pp. 1677-1684
Author(s):  
ELISSA J. SCHWARTZ ◽  
ANDREA CARA ◽  
HANS SNOECK ◽  
MICHAEL D. ROSS ◽  
MASAAKI SUNAMOTO ◽  
...  

Abstract. Human immunodeficiency virus—associated nephropathy (HIVAN) affects up to 10% of HIV-positive black adults and children and is the leading cause of renal disease in infected individuals. The disease is characterized by proliferation of renal epithelial cells, both glomerular and tubular. Diseased kidneys are enlarged, and glomerular visceral epithelial cells (podocytes) express proliferation markers. In a transgenic murine model of HIVAN expressing a deletion construct of HIV-1, the identical pathologic features are observed. It was demonstrated that HIV-1 mRNA is expressed in renal epithelium of the transgenic mouse and in patients with HIVAN, suggesting a direct role for HIV-1 in disease pathogenesis in both humans and the murine model. For investigating the mechanisms responsible for proliferative changes in podocytes, the HIV-1 transgenic mouse was bred onto the immortomouse background, and conditionally immortalized transgenic and nontransgenic podocyte cell lines were established. Transgenic podocytes demonstrated increased spontaneous proliferation, compared with nontransgenic podocytes at confluence, and they were found to have a greater percentage of cells in the proliferative phase of the cell cycle. It is striking that transgenic podocytes were not contact inhibited and formed aggregates in soft agar. Aggregates also formed when nontransgenic podocytes were infected with the identical HIV-1 construct used to generate the transgenic model. This demonstrates that the loss of contact inhibition is due to a direct effect of HIV-1. Therefore, proliferation induced by HIV-1 gene expression is likely to play a key role in the pathogenesis of HIVAN.

2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


2013 ◽  
Vol 9 (11) ◽  
pp. e1003776 ◽  
Author(s):  
Sandeep Gupta ◽  
Johannes S. Gach ◽  
Juan C. Becerra ◽  
Tran B. Phan ◽  
Jeffrey Pudney ◽  
...  

2002 ◽  
Vol 76 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Marie-Paule Carreno ◽  
Nicolas Chomont ◽  
Michel D. Kazatchkine ◽  
Theano Irinopoulou ◽  
Corrine Krief ◽  
...  

ABSTRACT Transmigration of human immunodeficiency virus (HIV)-infected mononuclear cells through the genital mucosa is one of the possible mechanisms of sexual transmission of HIV. Here, we investigated the transmigration of cell-associated R5-tropic HIV type 1 (HIV-1) through a tight monolayer of human epithelial cells in vitro. We show that this process is dependent on an initial interaction between αLβ2 integrin CD11a/CD18 on infected monocytic cells and intercellular adhesion molecule 2 (ICAM-2; CD102) and ICAM-3 (CD50) on the apical membrane of epithelial cells. The CD50 and CD102 ligands were overexpressed on epithelial cells when the cells were activated by proinflammatory cytokines in the cellular microenvironment. An accumulation of proviral DNA was found in the transmigrated cells, clearly reflecting the preferential transepithelial migration of HIV-1-infected cells under proinflammatory conditions. Our observations provide new insights supporting the hypothesis that HIV-infected mononuclear cells contained in genital secretions from infected individuals may cross the epithelial genital mucosa of an exposed receptive sexual partner, particularly under inflammatory conditions of damaged genital tissue. Understanding the fundamental aspects of the initial HIV entry process during sexual transmission remains a critical step for preventing human infection and developing further vaccinal strategies and virucidal agents.


2005 ◽  
Vol 77 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Elena Rodríguez-Iñigo ◽  
Esther Jiménez ◽  
Javier Bartolomé ◽  
Nuria Ortiz-Movilla ◽  
Begoña Bartolomé Villar ◽  
...  

2006 ◽  
Vol 81 (1) ◽  
pp. 395-405 ◽  
Author(s):  
Michael D. Bobardt ◽  
Udayan Chatterji ◽  
Suganya Selvarajah ◽  
Bernadette Van der Schueren ◽  
Guido David ◽  
...  

ABSTRACT Although the transport of human immunodeficiency virus type 1 (HIV-1) through the epithelium is critical for HIV-1 colonization, the mechanisms controlling this process remain obscure. In the present study, we investigated the transcellular migration of HIV-1 as a cell-free virus through primary genital epithelial cells (PGECs). The absence of CD4 on PGECs implicates an unusual entry pathway for HIV-1. We found that syndecans are abundantly expressed on PGECs and promote the initial attachment and subsequent entry of HIV-1 through PGECs. Although CXCR4 and CCR5 do not contribute to HIV-1 attachment, they enhance viral entry and transcytosis through PGECs. Importantly, HIV-1 exploits both syndecans and chemokine receptors to ensure successful cell-free transport through the genital epithelium. HIV-1-syndecan interactions rely on specific residues in the V3 of gp120 and specific sulfations within syndecans. We found no obvious correlation between coreceptor usage and the capacity of the virus to transcytose. Since viruses isolated after sexual transmission are mainly R5 viruses, this suggests that the properties conferring virus replication after transmission are distinct from those conferring cell-free virus transcytosis through the genital epithelium. Although we found that cell-free HIV-1 crosses PGECs as infectious particles, the efficiency of transcytosis is extremely poor (less than 0.02% of the initial inoculum). This demonstrates that the genital epithelium serves as a major barrier against HIV-1. Although one cannot exclude the possibility that limited passage of cell-free HIV-1 transcytosis through an intact genital epithelium occurs in vivo, it is likely that the establishment of infection via cell-free HIV-1 transmigration is a rare event.


1998 ◽  
Vol 72 (7) ◽  
pp. 5852-5861 ◽  
Author(s):  
Maurice Rothe ◽  
Laurent Chêne ◽  
Marie-Thérèse Nugeyre ◽  
Joséphine Braun ◽  
Françoise Barré-Sinoussi ◽  
...  

ABSTRACT We report here that human immunodeficiency virus type 1 (HIV-1)-infected human thymocytes, in the absence of any exogenous stimulus but cocultivated with autologous thymic epithelial cells (TEC), obtained shortly (3 days) after thymus excision produce a high and sustained level of HIV-1 particles. The levels and kinetics of HIV-1 replication were similar for seven distinct viral strains irrespective of their phenotypes and genotypes. Contact of thymocytes with TEC is a critical requirement for optimal viral replication. Rather than an inductive signal resulting from the contact itself, soluble factors produced in the mixed culture are responsible for this effect. Specifically, the synergistic effects of tumor necrosis factor, interleukin-1 (IL-1), IL-6, and granulocyte-macrophage colony-stimulating factor may account by themselves for the high level of HIV-1 replication in thymocytes observed in mixed cultures. In conclusion, the microenvironment generated by TEC-thymocyte interaction might greatly favor optimal HIV-1 replication in the thymus.


1999 ◽  
Vol 73 (5) ◽  
pp. 4433-4438 ◽  
Author(s):  
Min Lu ◽  
Hong Ji ◽  
Steven Shen

ABSTRACT The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) consists of two subunits, gp120 and gp41. The extraviral portion (ectodomain) of gp41 contains an α-helical domain that likely represents the core of the fusion-active conformation of the molecule. Here we report the identification and characterization of a minimal, autonomous folding subdomain that retains key determinants in specifying the overall fold of the gp41 ectodomain core. This subdomain, designated N34(L6)C28, is formed by covalent attachment of peptides N-34 and C-28 by a short flexible linker in place of the normal disulfide-bonded loop sequence. N34(L6)C28 forms a highly thermostable, α-helical trimer. Point mutations within the envelope protein complex that abolish membrane fusion and HIV-1 infectivity also impede the formation of the N34(L6)C28 core. Moreover, N34(L6)C28 is capable of inhibiting HIV-1 envelope-mediated membrane fusion. Taken together, these results indicate that the N34(L6)C28 core plays a direct role in the membrane fusion step of HIV-1 infection and thus provides a molecular target for the development of antiviral pharmaceutical agents.


2004 ◽  
Vol 48 (10) ◽  
pp. 3834-3844 ◽  
Author(s):  
Charlene S. Dezzutti ◽  
V. Nicole James ◽  
Artur Ramos ◽  
Sharon T. Sullivan ◽  
Aladin Siddig ◽  
...  

ABSTRACT A standardized protocol was used to compare cellular toxicities and anti-human immunodeficiency virus type 1 (HIV-1) activities of candidate microbicides formulated for human use. The microbicides evaluated were cellulose acetate phthalate (CAP), Carraguard, K-Y plus nonoxynol-9 (KY-N9), PRO 2000 (0.5 and 4%), SPL7013 (5%), UC781 (0.1 and 1%), and Vena Gel, along with their accompanying placebos. Products were evaluated for toxicity on cervical and colorectal epithelial cell lines, peripheral blood mononuclear cells (PBMCs), and macrophages (MΦ) by using an ATP release assay, and they were tested for their effect on transepithelial resistance (TER) of polarized epithelial monolayers. Anti-HIV-1 activity was evaluated in assays for transfer of infectious HIV-1 from epithelial cells to activated PBMCs and for PBMC and MΦ infection. CAP, Carraguard, PRO 2000, SPL7013, and UC781 along with their placebos were 20- to 50-fold less toxic than KY-N9 and Vena Gel. None of the nontoxic product concentrations disrupted the TER. Transfer of HIV-1Ba-L from epithelial cells to PBMCs and PBMC and MΦ infection with laboratory-adapted HIV-1Ba-L and HIV-1LAI isolates were inhibited by all products except Carraguard, KY-N9, and Vena Gel. KY-N9, Vena Gel, and Carraguard were not effective in blocking PBMC infection with primary HIV-1A, HIV-1C, and HIV-1CRF01-AE isolates. The concordance of these toxicity results with those previously reported indicates that our protocol may be useful for predicting toxicity in vivo. Moreover, our systematic anti-HIV-1 testing provides a rational basis for making better informed decisions about which products to consider for clinical trials.


2021 ◽  
Author(s):  
Irna Sufiawati ◽  
Rossana Herrera ◽  
Wasima Mayer ◽  
Xiaodan Cai ◽  
Jayanta Borkakoti ◽  
...  

Mother-to-child transmission (MTCT) of human immunodeficiency virus-1 (HIV-1) and human cytomegalovirus (HCMV) may occur during pregnancy, labor, or breastfeeding. These viruses from amniotic fluid, cervicovaginal secretions, and breast milk may simultaneously interact with oropharyngeal and tonsil epithelia; however, the molecular mechanism of HIV-1 and HCMV cotransmission through the oral mucosa and its role in MTCT are poorly understood. To study the molecular mechanism of HIV-1 and HCMV MTCT via oral epithelium, we established polarized infant tonsil epithelial cells and polarized-oriented ex vivo tonsil tissue explants. Using these models, we showed that cell-free HIV-1 and its proteins gp120 and tat induce the disruption of tonsil epithelial tight junctions and increase paracellular permeability, which facilitates HCMV spread within the tonsil mucosa. Inhibition of HIV-1 gp120-induced upregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling in tonsil epithelial cells, reduces HCMV infection, indicating that HIV-1-activated MAPK and NF-κB signaling may play a critical role in HCMV infection of tonsil epithelium. HCMV infection of tonsil epithelial cells also leads to the disruption of tight junctions and increases paracellular permeability, facilitating HIV-1 paracellular spread into tonsil mucosa. HCMV-promoted paracellular spread of HIV-1 increases its accessibility to tonsil CD4 T lymphocytes, macrophages, and dendritic cells. HIV-1-enhanced HCMV paracellular spread and infection of epithelial cells subsequently leads to the spread of HCMV to tonsil macrophages and dendritic cells. Our findings revealed that HIV-1- and HCMV-induced disruption of infant tonsil epithelial tight junctions promotes MTCT of these viruses through tonsil mucosal epithelium, and therapeutic intervention for both HIV-1 and HCMV infection may substantially reduce their MTCT. Importance Most HIV-1 and HCMV MTCT occurs in infancy, and the cotransmission of these viruses may occur via infant oropharyngeal and tonsil epithelia, which are the first biological barriers for viral pathogens. We have shown that HIV-1 and HCMV disrupt epithelial junctions, reducing the barrier functions of epithelia and thus allowing paracellular penetration of both viruses via mucosal epithelia. Subsequently, HCMV infects epithelial cells, macrophages, and dendritic cells, and HIV-1 infects CD4+ lymphocytes, macrophages, and dendritic cells. Infection of these cells in HCMV- and HIV-1-coinfected tonsil tissues is much higher than that by HCMV or HIV-1 infection alone, promoting their MTCT at its initial stages via infant oropharyngeal and tonsil epithelia.


2005 ◽  
Vol 79 (10) ◽  
pp. 6432-6440 ◽  
Author(s):  
N. K. Jana ◽  
L. R. Gray ◽  
D. C. Shugars

ABSTRACT The innate immune response is a key barrier against pathogenic microorganisms such as human immunodeficiency virus type 1 (HIV-1). Because HIV-1 is rarely transmitted orally, we hypothesized that oral epithelial cells participate in the innate immune defense against this virus. We further hypothesized that secretory leukocyte protease inhibitor (SLPI), a 12-kDa mucosal antiviral protein, is a component of the host immune response to this virus. Here we demonstrated constitutive expression and production of SLPI in immortalized human oral keratinocytes. Brief exposure of cells to HIV-1 BaL and HXB2 significantly increased SLPI mRNA and protein production compared to that in mock-exposed cells (P < 0.01), as evaluated by real-time quantitative reverse transcription-PCR and enzyme-linked immunosorbent assay. HIV-1-mediated stimulation of SLPI occurred at the transcriptional level, was dose and time dependent, was elicited by heat-inactivated and infectious viruses, and did not depend on cellular infection. Experiments with purified retroviral proteins showed that the stimulatory effect was induced specifically by external envelope glycoproteins from HIV-1 and simian immunodeficiency virus. SLPI responsiveness to HIV-1 was also observed in an unrelated oral epithelial cell line and in normal (nonimmortalized) human oral epithelial cells isolated from healthy uninfected gingival tissues. In this first report of SLPI regulation by HIV-1, we show that the expression and production of the antimicrobial and anti-inflammatory protein can be stimulated in oral epithelial cells by the virus through interactions with gp120 in the absence of direct infection. These findings indicate that SLPI is a component of the oral mucosal response to HIV-1.


Sign in / Sign up

Export Citation Format

Share Document