scholarly journals Residual limb skin temperature and thermal comfort in people with amputation during activity in a cold environment

2016 ◽  
Vol 53 (5) ◽  
pp. 619-628 ◽  
Author(s):  
Ava D. Segal ◽  
Glenn K. Klute
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Erna Meutia ◽  
Laina Hilma Sari

The Gayo Highland is one of the districts in Aceh Province, Sumatra. Due to the topography, this area has a lower  temperature compared than the flat and coastal areas in Aceh. The thermal comfort that is felt is based on a person's mental condition and how he expresses his satisfaction with his thermal environment. In other words, it shows how humans adapt to their thermal environment. Thermal comfort based on human adaptation is known as adaptive thermal comfort. The form of dwelling for the Gayo Highland community has shifted and changed from traditional dwelling to Transitional and Modern forms that influence the Gayo Highland community's adaptation to achieve thermal comfort. Therefore, this paper aims to investigate the house design in Gayo highland in providing warmth to the occupants naturally in the cold environment. Another aim of this study is to investigate the people's habits in warming up the body to deal with the low air temperature in the area.  This study shows how the local people adapt themselves through the house element and daily habit to gain the internal thermal comfort.


2019 ◽  
Vol 1 (3) ◽  
pp. 1-4
Author(s):  
Zaina Norhallis Zainol ◽  
Masine Md. Tap ◽  
Haslinda Mohamed Kamar

Thermal comfort is the human subject perceive satisfaction to the work environment. The thermal comfort need to be achieve towards productive working environment. The comfort level of the subject is affected by the human skin temperature. To assess the skin temperature with the sorrounding by conducting human experiment in the climatic chamber. It is rigorous and complex experiment.This study was developed to predict human skin temperature in comfort level with the finite element method and the bioheat equation. The bioheat equation is a consideration of metabolic heat generation and the blood perfusion to solve heat transfer of the living tissue. It is to determine the skin temperature focussing at the human arm. From the study, it is found that the predicted skin temperature value were in well agreement with the experimental results. The percentage error insignificant with acceptable error of 1.05%.


Ergonomics ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 1194-1202 ◽  
Author(s):  
B. Ayres ◽  
J. White ◽  
W. Hedger ◽  
J. Scurr

2005 ◽  
Vol 42 (2) ◽  
pp. 147 ◽  
Author(s):  
Jeffrey T. Peery ◽  
William R. Ledoux ◽  
Glenn K. Klute

2007 ◽  
Vol 42 (12) ◽  
pp. 3984-3999 ◽  
Author(s):  
Tomonori Sakoi ◽  
Kazuyo Tsuzuki ◽  
Shinsuke Kato ◽  
Ryozo Ooka ◽  
Doosam Song ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kamiar Ghoseiri ◽  
Mostafa Allami ◽  
Justin R. Murphy ◽  
Phillip Page ◽  
Duane C. Button

BACKGROUND: Interventions to resolve thermal discomfort as a common complaint in amputees are usually chosen based on the residual limb skin temperature while wearing prosthesis; whereas, less attention has been paid to residual limb skin temperature while outside of the prosthesis. The objective of this study was to explore the localized and regional skin temperature over the transtibial residual limb (TRL) while outside of the prosthesis. METHODOLOGY: Eight unilateral transtibial adults with traumatic amputation were enrolled in this cross-sectional study. Participants sat to remove their prostheses and rested for 30 minutes. Twelve sites were marked circumferentially in four columns (anterolateral, anteromedial, posteromedial, and posterolateral) and longitudinally in three rows (proximal, middle, and distal) over the residual limb and used for attachment of analog thermistors. Skin temperature was recorded and compared for 11 minutes. Furthermore, the relationship of skin temperature with participants’ demographic and clinical characteristics was explored. FINDINGS: The whole temperature of the TRL was 27.73 (SD=0.83)°C. There was a significant difference in skin temperature between anterior and posterior columns. Likewise, the distal row was significantly different from the proximal and middle rows. The mean temperature at the middle and distal zones of the anteromedial column had the highest and lowest skin temperatures (29.8 and 26.3°C, p<0.05), respectively. The mean temperature of the whole TRL had no significant relationships (p>0.05) with participants’ demographic and clinical characteristics. CONCLUSIONS: An unequal distribution of temperature over the TRL was found with significantly higher and lower temperatures at its anterior column and distal row, respectively. This temperature pattern should be considered for thermoregulation strategies. Further investigation of the residual limb temperature with and without prosthesis, while considering muscles thickness and blood perfusion rate is warranted. Layman's Abstract The socket is a plastic hard-shell interface between the residual limb, the remaining part of the amputated limb, and a prosthesis. Heat buildup inside the prosthetic socket and perspiration of the residual limb are major discomforts in amputees when wearing a prosthesis. The majority of prior research measured residual limb skin temperature while the prosthesis was worn. However, less attention has been paid to skin temperature without prostheses. Skin temperature of eight adults with one-sided traumatic below-knee amputation was measured. Participants sat and removed their prostheses. Twelve anatomical sites were marked circumferentially in four columns and longitudinally in three rows over the residual limb and used for temperature recording using temperature sensors. The whole temperature of the residual limb was 27.73 (SD=0.83)°C. Skin temperature was higher at anterior columns compared to posterior columns. Similarly, the distal row of the residual limb had the lowest temperature compared to its middle and proximal rows. From a localized standpoint, the middle part at the anterior medial surface of the residual limb had the highest temperature, whereas the distal part at the anterior-medial surface had the lowest skin temperature. There was no noticeable relationship between the average of the residual limb skin temperature and participants’ demographic and clinical characteristics. Some strategies need to be developed to regulate and control heat dissipation over the residual limb's surface when amputees do not wear prostheses. Further temperature recording research by considering muscle thickness and arterial blood flow rate of the residual limb with and without prosthesis is suggested. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/35070/27313 How To Cite: Ghoseiri K, Allami M, Murphy J.R, Page P, Button D.C. Investigation of localized skin temperature distribution across the transtibial residual limb. Canadian Prosthetics & Orthotics Journal. 2021;Volume 4, Issue 1, No.2. https://doi.org/10.33137/cpoj.v4i1.35070 Corresponding Author: Duane C Button, PhDSchool of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.E-mail: [email protected]: https://orcid.org/0000-0001-6402-8545    


Sign in / Sign up

Export Citation Format

Share Document