scholarly journals Using Computational Fluid Dynamics to Evaluate the Role of Air Purification in Reducing Fallow Time in Dentistry

Author(s):  
Raghava N ◽  
Vidovic B

In dentistry, fallow time is a period which allows for airborne pathogens to settle out of the air and mitigate the risk of airborne infection transmission to dental professionals and staff. The current recommendation is a one-hour period.

2020 ◽  
Author(s):  
Neha Raghava ◽  
Bojan Vidovic

Abstract AbstractIn dentistry, fallow time is a period which allows for airborne pathogens to settle out of the air and mitigate the risk of airborne infection transmission to dental professionals and staff. The current recommendation is a one hour period.Aims and Objectives We aim to show that air purification devices are an undervalued adjunctive measure to mitigate the risk of airborne transmission of pathogens, and so reduce fallow time.Methods Using a computational fluid dynamics software, we created a virtual dental surgery, and simulated a ten-minute aerosol generating procedure. We then modelled air flow in the room with no ventilation, and then the same room with an air purifier at a throughput of 430m3 h-1, and subsequently the room with one open window providing 6 ACH and no purifier. The particles released were monitored and their behaviour and airborne time measured and collated.Results and conclusions The room with no ventilation had a total particle number at 600s of 4.5million, which required 8400s to reduce by 99%. With an open window providing 6 ACH, we obtained a value of 2500s for a 99% reduction in airborne particles, and a similar peak particle volume. Conversely, when using an air purifier throughout the procedure, the peak particle number was ten times lower than the peak number without ventilation, or with an open window, and after the particle injection 99% airborne particle reduction was achieved 60s. Our findings suggest that the use of an air purifier greatly reduces the total particle volume in the air during the aerosol generating procedure, and the fallow period needed. The values found with 6 ACH and an open window are corroborated in other literature. The use of air purification could greatly reduce the risk of infection transmission in a dental surgery.


2011 ◽  
Vol 21 (6) ◽  
pp. 749-771 ◽  
Author(s):  
Mitja Mazej ◽  
Vincenc Butala

Detailed information of transient exhaled air dispersion and recirculation in the breathing zone can be obtained using computational fluid dynamics (CFD) to generate detailed numerical models and obtain the necessary information. In this study, interaction of free convection flow around human body with respiration flow of breathing and vertical personalized flow from personalized ventilation (PV) system was simulated using a commercial CFD package. Impact of breathing process on personal exposure effectiveness εp was evaluated for different operating and environmental conditions. Re-inhaled exposure index εRI for exhaled CO2 was used to assess the amount of exhaled air re-inhaled due to the interaction between personalized and exhaled airflows. Another objective of this study was to consider the risk of airborne infection transmission, caused by undesirable transport and dispersion of exhaled pathogens to surrounding air when infected individual uses PV. Results show that calculation of personal exposure effectiveness would be sufficiently accurate to give proper information about the protection of occupant with a PV system also without the breathing simulation included. The operating mode of a PV proved as the main factor for dispersion of exhaled air and its transport to the background room air, resulting in an increased risk of airborne infection transmission.


2012 ◽  
Vol 26 (5) ◽  
pp. 2786-2797 ◽  
Author(s):  
Stefan Hjärtstam ◽  
Robert Johansson ◽  
Klas Andersson ◽  
Filip Johnsson

Author(s):  
Antony Jameson

This paper discusses the role that computational fluid dynamics plays in the design of aircraft. An overview of the design process is provided, covering some of the typical decisions that a design team addresses within a multi-disciplinary environment. On a very regular basis trade-offs between disciplines have to be made where a set of conflicting requirements exists. Within an aircraft development project, we focus on the aerodynamic design problem and review how this process has been advanced, first with the improving capabilities of traditional computational fluid dynamics analyses, and then with aerodynamic optimizations based on these increasingly accurate methods.


Sign in / Sign up

Export Citation Format

Share Document