Development and scale-up of a hybrid carbon nanotube filter as a reactive substrate in ozone-based advanced oxidation processes

2015 ◽  
Author(s):  
Jason Patrick Haase
Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Silvia Franz ◽  
Ermelinda Falletta ◽  
Hamed Arab ◽  
Sapia Murgolo ◽  
Massimiliano Bestetti ◽  
...  

Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern.


2006 ◽  
Vol 129 (1) ◽  
pp. 60-67 ◽  
Author(s):  
B. Bayarri ◽  
O. González ◽  
M. I. Maldonado ◽  
J. Giménez ◽  
S. Esplugas

Chlorophenols (CPs) are toxic nonbiodegradable pollutants. In recent decades, several alternative processes for the treatment of these compounds have been investigated. Advanced Oxidation Processes (AOPs) are some of the most promising technologies. Among them, the UV-based AOPs [O3+Fe(II)+UV, photo-Fenton, UV+Fe(III), UV+H2O2, photocatalysis and photolysis] have previously been studied for the degradation of 2,4-dichlorophenol (DCP) in an aqueous solution at laboratory scale. In this paper, these techniques are compared and kinetic constants and pseudoquantum yields are estimated. O3−+Fe(II)+UV and photo-Fenton seem to be the most effective. To study scale-up of these processes from the laboratory to a pilot plant operating with sunlight, equivalent photocatalytic experiments were carried out in such installations. The results are promising and show trends similar to those obtained in the laboratory with lamps. The data obtained have been used to calculate some scale-up factors, which have been employed to make a rough estimation of the amount of waste water that can be treated by the solar AOPs studied. The results obtained are encouraging and prove the feasibility of this type of technology.


2021 ◽  
Vol 11 (3) ◽  
pp. 1042
Author(s):  
Danilo Russo

With the increasing number of recalcitrant pollutants in wastewater treatment plants, there will be a stringent need for rapid and convenient development of tertiary treatment processes such as advanced oxidation processes (AOPs). Microreactors offer a great opportunity for ultrafast and safe intrinsic kinetic parameters determination, by-products identification, and ecotoxicity assessment. Despite the considerable potential of these devices, they have been mostly used for catalyst screening or pseudo-first order kinetics determination, not allowing for knowledge transfer across scales. This work offers an overview of the adoption of micro- and photo-microreactors for intrinsic kinetics investigations in the field of AOPs to guide future research efforts.


2020 ◽  
Author(s):  
Marcel Schneider ◽  
Luděk Bláha

Abstract Drinking water production faces many different challenges with one of them being naturally produced cyanobacterial toxins. Since pollutants become more abundant and persistent today, conventional water treatment is often no longer sufficient to provide adequate removal. Amongst other emerging technologies, advanced oxidation processes (AOPs) have a great potential to appropriately tackle this issue. This review addresses the economic and health risks posed by cyanotoxins and discusses their removal from drinking water by AOPs. The current state of knowledge on AOPs and their application for cyanotoxin degradation is synthesized to provide an overview on available techniques and effects of water quality, toxin- and technique-specific parameters on their degradation efficacy. The different AOPs are compared based on their efficiency and applicability, considering economic, practical and environmental aspects and their potential to generate toxic disinfection byproducts. For future research, more relevant studies to include the degradation of less explored cyanotoxins, toxin mixtures in actual surface water, assessment of residual toxicity and scale-up are recommended. Since actual surface water most likely contains more than just cyanotoxins, a multi-barrier approach consisting of a series of different physical, biological and chemical – especially oxidative – treatment steps is inevitable to ensure safe and high quality drinking water.


2020 ◽  
Author(s):  
Marcel Schneider ◽  
Luděk Bláha

Abstract Drinking water production faces many different challenges with one of them being naturally produced cyanobacterial toxins. Since pollutants become more abundant and persistent today, conventional water treatment is often no longer sufficient to provide adequate removal. Amongst other emerging technologies, advanced oxidation processes (AOPs) have a great potential to appropriately tackle this issue. This review addresses the economic and health risks posed by cyanotoxins and discusses their removal from drinking water by AOPs. The current state of knowledge on AOPs and their application for cyanotoxin degradation is synthesized to provide an overview on available techniques and effects of water quality, toxin- and technique-specific parameters on their degradation efficacy. The different AOPs are compared based on their efficiency and applicability, considering economic, practical and environmental aspects and their potential to generate toxic disinfection byproducts. For future research, more relevant studies to include the degradation of less explored cyanotoxins, toxin mixtures in actual surface water, assessment of residual toxicity and scale-up are recommended. Since actual surface water most likely contains more than just cyanotoxins, a multi-barrier approach consisting of a series of different physical, biological and chemical – especially oxidative – treatment steps is inevitable to ensure safe and high quality drinking water.


Sign in / Sign up

Export Citation Format

Share Document