scholarly journals Kinetic Modeling of Advanced Oxidation Processes Using Microreactors: Challenges and Opportunities for Scale-Up

2021 ◽  
Vol 11 (3) ◽  
pp. 1042
Author(s):  
Danilo Russo

With the increasing number of recalcitrant pollutants in wastewater treatment plants, there will be a stringent need for rapid and convenient development of tertiary treatment processes such as advanced oxidation processes (AOPs). Microreactors offer a great opportunity for ultrafast and safe intrinsic kinetic parameters determination, by-products identification, and ecotoxicity assessment. Despite the considerable potential of these devices, they have been mostly used for catalyst screening or pseudo-first order kinetics determination, not allowing for knowledge transfer across scales. This work offers an overview of the adoption of micro- and photo-microreactors for intrinsic kinetics investigations in the field of AOPs to guide future research efforts.

2020 ◽  
Author(s):  
Marcel Schneider ◽  
Luděk Bláha

Abstract Drinking water production faces many different challenges with one of them being naturally produced cyanobacterial toxins. Since pollutants become more abundant and persistent today, conventional water treatment is often no longer sufficient to provide adequate removal. Amongst other emerging technologies, advanced oxidation processes (AOPs) have a great potential to appropriately tackle this issue. This review addresses the economic and health risks posed by cyanotoxins and discusses their removal from drinking water by AOPs. The current state of knowledge on AOPs and their application for cyanotoxin degradation is synthesized to provide an overview on available techniques and effects of water quality, toxin- and technique-specific parameters on their degradation efficacy. The different AOPs are compared based on their efficiency and applicability, considering economic, practical and environmental aspects and their potential to generate toxic disinfection byproducts. For future research, more relevant studies to include the degradation of less explored cyanotoxins, toxin mixtures in actual surface water, assessment of residual toxicity and scale-up are recommended. Since actual surface water most likely contains more than just cyanotoxins, a multi-barrier approach consisting of a series of different physical, biological and chemical – especially oxidative – treatment steps is inevitable to ensure safe and high quality drinking water.


Author(s):  
Kai-Xin Zhang ◽  
Chao Song ◽  
Shan Zhao ◽  
Zhen Yan ◽  
Li-Juan Feng ◽  
...  

Wastewater treatment plants are suspected to be significant point sources of microplastic and nanoplastic particles (NPs) into the environment. As one of the main wastewater treatment processes, advanced oxidation processes...


2020 ◽  
Author(s):  
Marcel Schneider ◽  
Luděk Bláha

Abstract Drinking water production faces many different challenges with one of them being naturally produced cyanobacterial toxins. Since pollutants become more abundant and persistent today, conventional water treatment is often no longer sufficient to provide adequate removal. Amongst other emerging technologies, advanced oxidation processes (AOPs) have a great potential to appropriately tackle this issue. This review addresses the economic and health risks posed by cyanotoxins and discusses their removal from drinking water by AOPs. The current state of knowledge on AOPs and their application for cyanotoxin degradation is synthesized to provide an overview on available techniques and effects of water quality, toxin- and technique-specific parameters on their degradation efficacy. The different AOPs are compared based on their efficiency and applicability, considering economic, practical and environmental aspects and their potential to generate toxic disinfection byproducts. For future research, more relevant studies to include the degradation of less explored cyanotoxins, toxin mixtures in actual surface water, assessment of residual toxicity and scale-up are recommended. Since actual surface water most likely contains more than just cyanotoxins, a multi-barrier approach consisting of a series of different physical, biological and chemical – especially oxidative – treatment steps is inevitable to ensure safe and high quality drinking water.


2020 ◽  
Vol 42 ◽  
pp. e7
Author(s):  
Joanna Cysneiros Silva ◽  
Rayany Magali da Rocha Santana ◽  
Graziele Elisandra do Nascimento ◽  
Alex Leandro Andrade de Lucena ◽  
Ana Maria Ribeiro Bastos da Silva ◽  
...  

Studies and research have been developed around the world on environmental pollution. Among the most diverse types of pollutants, textile dyes have attracted attention in the Brazilian Northeast. These compounds, besides being persistent, resist to the conventional treatments applied in the wastewater treatment plants. Thus, the present study evaluated the degradation of the mixture of direct red 23, direct red 227 and direct orange 26 dyes by advanced oxidation processes (AOPs). It was observed that the homogeneous AOPs were more efficient, being able to degrade 100% of the chromophoric groups after the optimization of the variables [H2O2], [Fe] and pH. The reaction kinetics for the photo-Fenton process followed a pseudo-first order non-linear model, with rapid decay of the concentrations in the first 60 min. Aiming to have a methodology capable of predicting the degradation efficiency for the studied processes, it was verified that the artificial neural networks MLP 4-9-3 and MLP 5-6-3 well represent the data from the homogeneous and heterogeneous processes, respectively. A toxicity study was carried out using seeds, bacteria and microcrustaceans and it was found that the intermediate compounds formed during the treatment process act differently for each of them.


Author(s):  
Nurazim Ibrahim ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Hamidi Abdul Aziz

The presence of hazardous micropollutants in water and wastewater is one of the main concerns in water management system. This micropollutant exists in a low concentration, but there are possible hazards to humans and organisms living in the water. Moreover, its character that is recalcitrant to microbiological degradation makes it difficult to deal with. Advanced oxidation processes (AOPs) are efficient methods to remove low concentration micropollutants. AOPs are a set of processes consisting the production of very reactive oxygen species which able to destroy a wide range of organic compounds. The main principal mechanism in UV-based radical AOP treatment processes is the use ultraviolet light to initiate generation of hydroxyl radicals used to destroy persistent organic pollutants. Therefore, this chapter presents an overview on the principle of radical oxidant species generation and degradation mechanism by various type of UV based AOP in treating contaminants present in water and wastewater. The current application and possible improvement of the technology is also presented in this chapter.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Silvia Franz ◽  
Ermelinda Falletta ◽  
Hamed Arab ◽  
Sapia Murgolo ◽  
Massimiliano Bestetti ◽  
...  

Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern.


2006 ◽  
Vol 129 (1) ◽  
pp. 60-67 ◽  
Author(s):  
B. Bayarri ◽  
O. González ◽  
M. I. Maldonado ◽  
J. Giménez ◽  
S. Esplugas

Chlorophenols (CPs) are toxic nonbiodegradable pollutants. In recent decades, several alternative processes for the treatment of these compounds have been investigated. Advanced Oxidation Processes (AOPs) are some of the most promising technologies. Among them, the UV-based AOPs [O3+Fe(II)+UV, photo-Fenton, UV+Fe(III), UV+H2O2, photocatalysis and photolysis] have previously been studied for the degradation of 2,4-dichlorophenol (DCP) in an aqueous solution at laboratory scale. In this paper, these techniques are compared and kinetic constants and pseudoquantum yields are estimated. O3−+Fe(II)+UV and photo-Fenton seem to be the most effective. To study scale-up of these processes from the laboratory to a pilot plant operating with sunlight, equivalent photocatalytic experiments were carried out in such installations. The results are promising and show trends similar to those obtained in the laboratory with lamps. The data obtained have been used to calculate some scale-up factors, which have been employed to make a rough estimation of the amount of waste water that can be treated by the solar AOPs studied. The results obtained are encouraging and prove the feasibility of this type of technology.


2019 ◽  
Vol 1 (1) ◽  
pp. 11-15
Author(s):  
Mirela Alina Constantin ◽  
Lucian Alexandru Constantin ◽  
Ines Nitoi ◽  
Ionut Cristea ◽  
Ellea Boulac

Degradation experiments on 5-Fluorouracil synthetic solutions were performed using three types of advanced oxidation systems: UV/H2O2, UV/TiO2 and UV/H2O2/TiO2. Optimum parameters for all three systems were established and 5-Fluorouracil degradation efficiencies were calculated, for all systems being more than 97%. The results showed that the combined UV/H2O2/TiO2 system is offering shortest irradiation time, the possibility to recover and reuse the photo catalyst as well as the possibility to use solar radiation. Obtained results proved also that advanced oxidation processes represent a viable option for degradation of hazardous pollutants that cannot be removed properly via conventional wastewater treatment processes.


2020 ◽  
Vol 2 (1) ◽  
pp. 4-10
Author(s):  
Lucian Alexandru Constantin ◽  
Mirela Alina Constantin ◽  
Ines Nitoi ◽  
Toma Galaon ◽  
Valeriu Robert Badescu ◽  
...  

Synthetic solutions of flutamide were subject to degradation using three advanced oxidation systems, namely UV/TiO2, UV/H2O2 and UV/H2O2/TiO2. Optimum conditions and degradation kinetics has been established for all three systems. The experimental results showed that all three systems can be successfully used for flutamide degradation with efficiencies higher than 99% and that advanced oxidation processes are showing good potential for degradation of organic pollutants that cannot be suitable removed/degraded using conventional wastewater treatment processes.


Sign in / Sign up

Export Citation Format

Share Document