The regulaton and function of nuclear factor of activated T-cells in neurons

2011 ◽  
Author(s):  
Jason Daniel Ulrich
2018 ◽  
Vol 119 (11) ◽  
pp. 9334-9345 ◽  
Author(s):  
Jungeun Yu ◽  
Stefano Zanotti ◽  
Lauren Schilling ◽  
Ernesto Canalis

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3537-3548 ◽  
Author(s):  
J. H. Duncan Bassett ◽  
John G. Logan ◽  
Alan Boyde ◽  
Moira S. Cheung ◽  
Holly Evans ◽  
...  

Calcineurin-nuclear factor of activated T cells signaling controls the differentiation and function of osteoclasts and osteoblasts, and regulator of calcineurin-2 (Rcan2) is a physiological inhibitor of this pathway. Rcan2 expression is regulated by T3, which also has a central role in skeletal development and bone turnover. To investigate the role of Rcan2 in bone development and maintenance, we characterized Rcan2−/− mice and determined its skeletal expression in T3 receptor (TR) knockout and thyroid-manipulated mice. Rcan2−/− mice had normal linear growth but displayed delayed intramembranous ossification, impaired cortical bone formation, and reduced bone mineral accrual during development as well as increased mineralization of adult bone. These abnormalities resulted from an isolated defect in osteoblast function and are similar to skeletal phenotypes of mice lacking the type 2 deiodinase thyroid hormone activating enzyme or with dominant-negative mutations of TRα, the predominant TR isoform in bone. Rcan2 mRNA was expressed in primary osteoclasts and osteoblasts, and its expression in bone was differentially regulated in TRα and TRβ knockout and thyroid-manipulated mice. However, in primary osteoblast cultures, T3 treatment did not affect Rcan2 mRNA expression or nuclear factor of activated T cells c1 expression and phosphorylation. Overall, these studies establish that Rcan2 regulates osteoblast function and its expression in bone is regulated by thyroid status in vivo.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e19186 ◽  
Author(s):  
Man Chi Mak ◽  
Ka Man Lam ◽  
Ping Kei Chan ◽  
Yu Bond Lau ◽  
Wai Ho Tang ◽  
...  

2000 ◽  
Vol 20 (2) ◽  
pp. 702-712 ◽  
Author(s):  
Chi-Wing Chow ◽  
Roger J. Davis

ABSTRACT Calcium-stimulated nuclear factor of activated T cells (NFAT) transcription activity at the interleukin-2 promoter is negatively regulated by cyclic AMP (cAMP). This effect of cAMP is mediated, in part, by protein kinase A phosphorylation of NFAT. The mechanism of regulation involves the creation of a phosphorylation-dependent binding site for 14-3-3. Decreased NFAT phosphorylation caused by the calcium-stimulated phosphatase calcineurin, or mutation of the PKA phosphorylation sites, disrupted 14-3-3 binding and increased NFAT transcription activity. In contrast, NFAT phosphorylation caused by cAMP increased 14-3-3 binding and reduced NFAT transcription activity. The regulated interaction between NFAT and 14-3-3 provides a mechanism for the integration of calcium and cAMP signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document