scholarly journals Depositional environment - The original control on gold processing

Author(s):  
K.L. Youlton ◽  
J.A. Kinnaird ◽  
B.J. Youlton

SYNOPSIS Methods for treating and processing refractory gold ores are well established. However, what is less well understood is how the formation of the gold-bearing deposits affects gold processing and extraction. In order to evaluate the effect of ore genesis on gold extraction a number of South African gold deposits were studied. These included complex Pilgrim's Rest samples as well as refractory Fairview, Barbrook, and Consolidated Murchison samples. We found the refractory nature of gold ores is controlled by a limited number of well-understood mineralogical factors. Solid solution gold is linked to low temperature and pressure conditions in fine-grained sedimentary lithologies, while reactive pyrrhotite can form from hydrothermal fluids associated with mafic magmatic rocks. These formational controls can be used to identify and avoid complex deposits at a desktop study phase, or address and reduce complications further along the pipeline using early mineralogical studies. Keywords: gold processing, refractory gold, ore mineralogy.

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1216
Author(s):  
Rui Xu ◽  
Qian Li ◽  
Feiyu Meng ◽  
Yongbin Yang ◽  
Bin Xu ◽  
...  

Carbonaceous sulfidic gold ores are commonly double refractory and thus require pretreatment before gold extraction. In this paper, the capacity of pre-bio-oxidation can simultaneously decompose sulfides or deactivate carbonaceous matters (CM) from a double refractory gold ore (DRGO) using pure cultures of A. ferrooxidans or L. ferrooxidans, and a mixed culture containing A. ferrooxidans and L. ferrooxidans was investigated. The results showed that direct thiourea leaching of the as-received DRGO yielded only 28.7% gold extraction, which was due to the encapsulation of sulfides on gold and the gold adsorption of CM. After bio-oxidation, thiourea leaching of the DRGO resulted in gold extraction of over 75–80%. Moreover, bio-oxidation can effectively reduce the adsorption of carbon to gold. XRD, SEM-EDS and FTIR analysis showed that many oxygen-containing groups were introduced on the surface of DRGO during bio-oxidation, while the C=C bond was cleaved and the O–C–O and C–N bonds were degraded, causing a decrease in active sites for gold adsorption. Moreover, passivation materials such as jarosite were formed on the surface of DRGO, which might reduce the affinity of CM for gold in solutions. In addition, the cleavage of the S–S band indicated that sulfides were oxidized by bacteria. This work allows us to explain the applicability of pre-bio-oxidation for degrading both sulfides and CM and increasing gold recovery from DRGO in the thiourea system.


2015 ◽  
Vol 1130 ◽  
pp. 614-617 ◽  
Author(s):  
Robert J. Huddy ◽  
Rose Kantor ◽  
Wynand van Zyl ◽  
Robert P. van Hille ◽  
Jillian F. Banfield ◽  
...  

Gold extraction by cyanidation from refractory gold ores results in the formation of thiocyanate-and cyanide-contaminated wastewater effluents that must be treated before recycle or discard. Activated sludge processes, such as ASTERTM, can be used for biodegradation of these effluent streams. The destruction of these compounds is catalyzed by a mixed microbial culture, however, very little is known about the community composition and metabolic potential of the thiocyanate-and cyanide-degrading microorganisms within the community. Here we describe our on-going attempts to better understand the key microorganisms, within the ASTERTM bioprocess, that contribute to the destruction of thiocyanate and cyanide, and how this knowledge relates to further process optimisation.


2013 ◽  
Vol 825 ◽  
pp. 427-430 ◽  
Author(s):  
Grace Ofori-Sarpong ◽  
Kwadwo Osseo-Asare ◽  
Ming Tien

The fungus Phanerochaete chrysosporium has been proven to biotransform refractory gold ores, leading to increase in gold recovery. This transformation has been attributed to enzymes secreted by the microbe. This paper reports the findings of preliminary investigations aimed at assessing the use of hydrogen peroxide and cell-free extracts from the fungus, P. chrysosporium, to effect biotransformation of sulphidic refractory gold ores. The investigations show that the total dissolved arsenic, iron and sulphur in solution were up to 5.2 wt%, 0.9 wt% and 6.0 wt% respectively from flotation concentrate after 72 hrs of treatment. Analysis for sulphide sulphur in the residual solids of the gold concentrate indicated about 25 wt% oxidation within 24 hours of treatment. In general, cell-free decomposition of the samples did not increase beyond 24 hours of contact time, possibly due to exhaustion of the active components. Gold extraction by cyanidation increased by 24% after 24-hr treatment with the cell-free extracts. Comparatively, cell-free (in vitro) treatment recorded 66% overall gold recovery as against 61% for whole cell (in vivo) after 72 hours of treatment. These initial results indicate clearly that in vitro processing is a promising alternative to in vivo processing of refractory gold ores using P. chrysosporium.


2014 ◽  
Vol 997 ◽  
pp. 642-645 ◽  
Author(s):  
He Shang ◽  
Jian Kang Wen ◽  
Biao Wu

Gold ores can be categorized into two types-free milling and refractory. Free milling ores are easy to treat. Gold in such ores is recovered by gravity separating techniques or direct cyanidation. Refractory gold ores, on the contrary, are difficult to treat and require pre-treatment prior to cyanidation, such as roasting, pressure oxidation, fine grinding and biooxidation. A number of bacteria are used in biomining but the prominent ones that are known to be involved in the oxidation of sulfide ores include Thiobacillusferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. In this study, the gold concentrate was biooxidized in a reactor at 45°C over a period of 10 days at a pulp density of 15% solids using a culture of already grown Ferroplasma acidiphilum. The initial pH was adjusted to 1.5 with sulfuric acid, resulted in 85.39 % oxidation of sulfur from initial grade of 33.83 %, and the slag rate was 68.52 %. The products of sulfide biooxidation were leached at a pulp density of 20 %(v/w) for 24 h at pH 11. The pH was adjusted using CaO and cyanide strength was 10 kg/t, we got a gold extraction of 90.71 %, which ncreaseed 80.09 % compared with the direct cyanide leaching.


2021 ◽  
Vol 164 ◽  
pp. 106822
Author(s):  
Hong Qin ◽  
Xueyi Guo ◽  
Qinghua Tian ◽  
Dawei Yu ◽  
Lei Zhang

2013 ◽  
Vol 825 ◽  
pp. 352-355 ◽  
Author(s):  
Zeng Ling Wu ◽  
Zhong Sheng Huang ◽  
Ren Man Ruan ◽  
Shui Ping Zhong ◽  
Brenda K.C. Chan

Low-grade, finely disseminated refractory sulfide gold ores associated with high arsenic are ubiquitous resources all over the world. Since heap bio-oxidation is an economic and promising biotechnology to recover gold, low grade, high organic carbon and arsenic bearing gold ores from Zhesang Mines in China were chosen for this purpose to study the key factors that would affect biooxidation. Pyrite and arsenopyrite (particle size 0.002-0.22 mm) were the main minerals from Mineral Liberation Analysis (MLA). Column biooxidation and cyanidation of mineral size < 10 mm were evaluated for its potential for gold extraction. Results showed that temperature was the main factor influencing sulfide oxidation. 58-67 % of sulfide was oxidized at 35-45°C after > 240 days of biooxidation with mixed mesophiles, while higher sulfide-S dissolution (77%) was obtained at 60°C. Sulfide-S fraction distribution revealed higher mineral decomposition, finer fractions and eventually higher sulfide oxidation at 60°C. Jarosite and scorodite were found from the residues at 60°C by SEM and EDX, which implies higher temperature accelerated arsenic precipitation. No elemental sulfur was detected during the biooxidation at 35-60°C. After bio-oxidation, column cyanidation was successfully demonstrated recovery of gold from the residues, with gold extraction rate reaching 66%.


Sign in / Sign up

Export Citation Format

Share Document