scholarly journals Benefits of maize resistance breeding and chemical control against northern leaf blight in smallholder farms in South Africa

2020 ◽  
Vol 116 (11/12) ◽  
Author(s):  
Dave K. Berger ◽  
Tumisang Mokgobu ◽  
Katrien de Ridder ◽  
Nanette Christie ◽  
Theresa A.S. Aveling

Maize underpins food security in South Africa. An annual production of more than 10 million tons is a combination of the output of large-scale commercial farms plus an estimated 250 000 ha cultivated by smallholder farmers. Maize leaves are a rich source of nutrients for fungal pathogens. Farmers must limit leaf blighting by fungi to prevent sugars captured by photosynthesis being ‘stolen’ instead of filling the grain. This study aimed to fill the knowledge gap on the prevalence and impact of fungal foliar diseases in local smallholder maize fields. A survey with 1124 plant observations from diverse maize hybrids was conducted over three seasons from 2015 to 2017 in five farming communities in KwaZulu-Natal Province (Hlanganani, Ntabamhlophe, KwaNxamalala) and Eastern Cape Province (Bizana, Tabankulu). Northern leaf blight (NLB), common rust, Phaeosphaeria leaf spot, and grey leaf spot had overall disease incidences of 75%, 77%, 68% and 56%, respectively, indicating high disease pressure in smallholder farming environments. NLB had the highest disease severity (LSD test, p<0.05). A yield trial focused on NLB in KwaZulu-Natal showed that this disease reduced yields in the three most susceptible maize hybrids by 36%, 71% and 72%, respectively. Eighteen other hybrids in this trial did not show significant yield reductions due to NLB, which illustrates the progress made by local maize breeders in disease resistance breeding. This work highlights the risk to smallholder farmers of planting disease-susceptible varieties, and makes recommendations on how to exploit the advances of hybrid maize disease resistance breeding to develop farmer-preferred varieties for smallholder production.

Crop Science ◽  
2010 ◽  
Vol 50 (2) ◽  
pp. 458-466 ◽  
Author(s):  
Peter J. Balint-Kurti ◽  
Junyun Yang ◽  
George Van Esbroeck ◽  
Janelle Jung ◽  
Margaret E. Smith

Author(s):  
J. E. Taylor

Abstract A description is provided for Leptosphaeria protearum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Protea caffra, P. cynaraides, P. compacta, P. gaguedi, P. grandiceps, P. lacticolor, P. lepidocarpodendron, P. lorifolia, P. magnifica, P. punctata, P. repens, Protea spp. DISEASE: Leaf spot often resembling a leaf blight. GEOGRAPHICAL DISTRIBUTION: South Africa, Zimbabwe, Hawaii. TRANSMISSION: Propagules are probably wind and splash dispersed.


2010 ◽  
Vol 9 (8) ◽  
pp. 437-446 ◽  
Author(s):  
Ramesh Chandra ◽  
Madhu Kamle ◽  
Anju Bajpai ◽  
M. Muthukumar ◽  
Shahina Kalim

2019 ◽  
Vol 40 (2) ◽  
pp. 517
Author(s):  
Kaian Albino Corazza Kaefer ◽  
Adilson Ricken Schuelter ◽  
Ivan Schuster ◽  
Jonatas Marcolin ◽  
Eliane Cristina Gruszka Vendruscolo

Among the maize leaf diseases, white leaf spot, northern leaf blight, gray leaf spot, and southern rust are recognized not only by the potential for grain yield reduction but also by the widespread occurrence in the producing regions of Brazil and the world. The aim of this study was to characterize common maize lines for resistance to white leaf spot, northern leaf blight, gray leaf spot, and southern rust and suggest crosses based on the genetic diversity detected in SNP markers. The experiment was conducted in a randomized block design with three replications in order to characterize 72 maize lines. Genotypic values were predicted using the REML/BLUP procedure. These 72 lines were genotyped with SNP markers using the 650K platform (Affymetrix®) for the assessment of the genetic diversity. Genetic diversity was quantified using the Tocher and UPGMA methods. The existence of genetic variability for disease resistance was detected among maize lines, which made possible to classify them into three large groups (I, II, and III). The maize lines CD 49 and CD50 showed a good performance and can be considered sources of resistance to diseases. Therefore, their use as gene donors in maize breeding programs is recommended. Considering the information of genetic distance together with high heritability for leaf diseases, backcrossing of parent genotypes with different resistance levels, such as those of the lines CD49 x CD69 and CD50 x CD16, may result in new gene combinations, as they are divergent and meet good performances.


2018 ◽  
Vol 56 (1) ◽  
pp. 67-87 ◽  
Author(s):  
Beat Keller ◽  
Thomas Wicker ◽  
Simon G. Krattinger

The gene pool of wheat and its wild and domesticated relatives contains a plethora of resistance genes that can be exploited to make wheat more resilient to pathogens. Only a few of these genes have been isolated and studied at the molecular level. In recent years, we have seen a shift from classical breeding to genomics-assisted breeding, which makes use of the enormous advancements in DNA sequencing and high-throughput molecular marker technologies for wheat improvement. These genomic advancements have the potential to transform wheat breeding in the near future and to significantly increase the speed and precision at which new cultivars can be bred. This review highlights the genomic improvements that have been made in wheat and its pathogens over the past years and discusses their implications for disease-resistance breeding.


Sign in / Sign up

Export Citation Format

Share Document