Optimising Design of Electrical Machines with Permanent Magnets on the Basis of a Femm Package

Author(s):  
Sergey Pakhomin ◽  
◽  
Leonid Pakhomin ◽  
Author(s):  
Belli Zoubida ◽  
Mohamed Rachid Mekideche

Purpose – Reducing eddy current losses in magnets of electrical machines can be obtained by means of several techniques. The magnet segmentation is the most popular one. It imposes the least restrictions on machine performances. This paper investigates the effectiveness of the magnet circumferential segmentation technique to reduce these undesirable losses. The full and partial magnet segmentation are both studied for a frequency range from few Hz to a dozen of kHz. To increase the efficiency of these techniques to reduce losses for any working frequency, an optimization strategy based on coupling of finite elements analysis and genetic algorithm is applied. The purpose of this paper is to define the parameters of the total and partial segmentation that can ensure the best reduction of eddy current losses. Design/methodology/approach – First, a model to analyze eddy current losses is presented. Second, the effectiveness of full and partial magnet circumferential segmentation to reduce eddy loss is studied for a range of frequencies from few Hz to a dozen of kHz. To achieve these purposes a 2-D finite element model is developed under MATLAB environment. In a third step of the work, an optimization process is applied to adjust the segmentation design parameters for best reduction of eddy current losses in case of surface mounted permanent magnets synchronous machine. Findings – In case of the skin effect operating, both full and partial magnet segmentations can lead to eddy current losses increases. Such deviations of magnet segmentation techniques can be avoided by an appropriate choice of their design parameters. Originality/value – Few works are dedicated to investigate partial magnet segmentation for eddy current losses reduction. This paper studied the effectiveness and behaviour of partial segmentation for different frequency ranges. To avoid eventual anomalies related to the skin effect an optimization process based on the association of the finite elements analysis to genetic algorithm method is adopted.


2013 ◽  
Vol 769 ◽  
pp. 3-10 ◽  
Author(s):  
Jan Tremel ◽  
Benjamin Hofmann ◽  
Florian Risch

Due to rapid developments within the family of rare-earth materials innovative electrical machines can nowadays be used as high efficient generators in various power, as well as rugged constructed machines for automobile battery based propulsion in hybrid and full electric vehicles. The production of different motor concepts spread into different design variants and creates complex variations especially regarding the rotor. Deriving from various research projects, the handling of the permanent magnet components is investigated, including the development of new assembly and fixation methods.


Author(s):  
Andrejs Podgornovs ◽  
Anton Sipovics

Electromechanical Battery, Electrical Machines Mass Functions AnalysisIn this paper different types of electrical machines in electromechanical battery, were described. The most known manufactured battery data is composed. Three types of machines: synchronous machine with salient poles and electromagnetic excitation, with permanent magnets on rotor and reluctance synchronous machine were analyzed. For all types of machines, mass is function of general geometrical size of magnetic system and machines electrical power.


2015 ◽  
Vol 62 (2) ◽  
pp. 857-865 ◽  
Author(s):  
Juha Pyrhonen ◽  
Sami Ruoho ◽  
Janne Nerg ◽  
Martti Paju ◽  
Sampo Tuominen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document