Biological and molecular characterisation of the two Polish Wheat streak mosaic virus isolates and their transmission by wheat curl mites

Author(s):  
Katarzyna Trzmiel ◽  
Wiktoria Szydło ◽  
Beata Hasiów-Jaroszewska

Wheat streak mosaic virus (WSMV) is a serious and widespread pathogen in the wheat-producing areas in the USA while, in Europe, it has been considered a minor threat to cereal crops. In the past, WSMV was detected in wheat, triticale and maize plants in Poland by DAS-ELISA. Here, we present the biological and molecular characterisation of WSMV-Sze and WSMV-Sosn isolates collected from western and southern Poland and report their transmissibility by the widespread wheat curl mite (WCM) lineage MT-8. The performed bioassays revealed that the analysed WSMV isolates infect wheat, barley, triticale, rye, oat and maize, but they differ in the symptoms induced on the infected plants. Moreover, they infect Bromus hordeaceus Linnaeus, which is increasingly recognised as a virus reservoir. The full-length genome sequence of both isolates was obtained and compared with the others described to date. The phylogenetic analysis revealed that the Polish isolates are clustered with the earlier described type B isolates of WSMV from Europe and Iran. The recombination analysis revealed the presence of recombinant variants in WSMV population and indicated that the WSMV-Sosn might originated from the intra-species recombination of the WSMV-Sze and WSMV-Cz isolates.

2011 ◽  
Vol 104 (4) ◽  
pp. 1406-1414 ◽  
Author(s):  
M. Murugan ◽  
P. Sotelo Cardona ◽  
P. Duraimurugan ◽  
A. E. Whitfield ◽  
D. Schneweis ◽  
...  

1979 ◽  
Vol 72 (6) ◽  
pp. 854-855 ◽  
Author(s):  
T. L. Harvey ◽  
T. J. Martin ◽  
C. A. Thompson

Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dallas L. Seifers ◽  
Steve Haber ◽  
T. J. Martin ◽  
Guorong Zhang

Expressing temperature-sensitive resistance (TSR) protects wheat against yield losses from infection with Wheat streak mosaic virus (WSMV). In examining how 2,429 wheat accessions from the National Small Grains Collection responded to inoculation with the Sid81 isolate of WSMV, 20 candidate TSR sources were discovered. To differentiate their relative effectiveness, accession responses over 21 days to inoculation with GH95, Sid81, and PV57 virus isolates in regimes of 18 and 20°C were observed. At 18°C, all 20 candidate TSR sources were uniformly or nearly uniformly asymptomatic 21 days after inoculation with the PV57 isolate, resistance indistinguishable from resistant checks KS96HW10-3 and RonL. By contrast, the Sid81 isolate induced symptoms in low but significant proportions of plants of two candidates, and the GH95 isolate in high proportions for four candidates and low but significant proportions for two others. In the more stringent 20°C regime, the uniform or near-uniform induction of symptoms in response to inoculation with GH95 failed to differentiate among the 20 candidate TSR sources and two resistant checks, while PV57 and Sid81 identified several candidates that performed similarly to KS96HW10-3 and significantly better than RonL. By identifying new sources of resistance, this study contributes to the control of WSMV.


2008 ◽  
Vol 124 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Shirin Farzadfar ◽  
Yasuhiro Tomitaka ◽  
Mutsumi Ikematsu ◽  
Ali Reza Golnaraghi ◽  
Reza Pourrahim ◽  
...  

Genome ◽  
1989 ◽  
Vol 32 (6) ◽  
pp. 1033-1036 ◽  
Author(s):  
E. D. P. Whelan ◽  
J. B. Thomas

Wheat streak mosaic is a destructive disease of wheat caused by wheat streak mosaic virus. Wheat streak mosaic virus is vectored by the wheat curl mite (Eriophyes tulipae Keifer). A single dominant gene conditioning resistance to colonization by the mite vector was transferred from Aegilops squarrosa L. to a synthetic amphiploid (AC PGR 16635) and then to common wheat (Triticum aestivum L. em. Thell.) through backcrossing. Because of its origin, the transferred gene was probably located in the D genome. Monosomics 1D through 7D were crossed with a homozygous resistant line with the pedigree Norstar*4/AC PGR 16635. Both 41- and 42-chromosome F1 plants were identified and selfed to obtain F2 seed. The observed proportion of resistant and susceptible plants in 6 of the 7 F2 families from monosomics, and in all 7 of the F2s from disomics, did not deviate significantly from a 3:1 ratio. However, the proportion of resistant plants from the F2 of monosomic 6D was significantly (p < 0.01) in excess of this ratio and susceptible plants from this family were nullisomic for all or part of 6D. In crosses with standard ditelosomic stocks, telocentrics from a ditelosomic derivative of susceptible individual of this F2 paired with 6D(L) but failed to pair with 6D(S). The F2 of heterozygous resistant plants that were monotelodisomic for the long arm of 6D(L) segregated approximately 19 resistant to 1 susceptible, while those from monotelodisomics for the short arm segregated normally (3 resistant to 1 susceptible, p = 0.27). These data show that the gene Cmcl for mite resistance is located on the short arm of chromosome 6D. Key words: Aegilops squarrosa, wheat streak mosaic virus.


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Qin Chen ◽  
R L Conner ◽  
H J Li ◽  
S C Sun ◽  
F Ahmad ◽  
...  

Thinopyrum intermedium (2n = 6x = 42, JJJsJsSS) is potentially a useful source of resistance to wheat streak mosaic virus (WSMV) and its vector, the wheat curl mite (WCM). Five partial amphiploids, namely Zhong 1, Zhong 2, Zhong 3, Zhong 4, and Zhong 5, derived from Triticum aestivum × Thinopyrum intermedium crosses produced in China, were screened for WSMV and WCM resistance. Zhong 1 and Zhong 2 had high levels of resistance to WSMV and WCM. The other three partial amphiploids, Zhong 3, 4, and 5, were resistant to WSMV, but were susceptible to WCM. Genomic in situ hybridization (GISH) using a genomic DNA probe from Pseudoroegneria strigosa (SS, 2n = 14) demonstrated that two partial amphiploids, Zhong 1 and Zhong 2, have almost the identical 10 Th. intermedium chromosomes, including four Js, four J, and two S genome chromosomes. Both of them carry two pairs of J and a pair of Js genome chromosomes and two different translocations that were not observed in the other three Zhong lines. The partial amphiploids Zhong 3, 4, and 5 have another type of basic genomic composition, which is similar to a reconstituted alien genome consisting of four S and four Js genome chromosomes of Th. intermedium (Zhong 5 has two Js chromosomes plus two Js–W translocations) with six translocated chromosomes between S and Js or J genomes. All three lines carry a specific S–S–Js translocated chromosome, which might confer resistance to barley yellow dwarf virus (BYDV-PAV). The present study identified a specific Js2 chromosome present in all five of the Zhong lines, confirming that a Js chromosome carries WSMV resistance. Resistance to WCM may be linked with J or Js chromosomes. The discovery of high levels of resistance to both WSMV and WCM in Zhong 1 and Zhong 2 offers a useful source of resistance to both the virus and its vector for wheat breeding programs.Key words: GISH, genomic composition, J, Js and S genomes, Thinopyrum intermedium, partial amphiploid, WSMV, WCM resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carmen Y. Murphy ◽  
Mary E. Burrows

The wheat curl mite (WCM, Aceria tosichella, Keifer) is an eriophyid mite species complex that causes damage to cereal crops in the Northern Great Plains by feeding damage and through the transmission of plant viruses, such as wheat streak mosaic virus. Insecticide treatments were evaluated in the greenhouse and field for efficacy at managing the WCM complex on wheat. Treatments tested were carbamates, organophosphates, pyrethroids, a neonicotinoid seed treatment, mite growth inhibitors, and Organic Materials Review Institute–approved biocontrols, soaps, and oils. Treatment with carbamates, organophosphates, and pyrethroids decreased WCM in greenhouse trials compared with untreated controls 14 days after infestation. The seed treatment, mite growth inhibitors, and organic pesticides did not reduce WCM populations effectively and consistently. The timing of application was tested using a sulfur solution as the experimental treatment. Treating plants with sulfur seven days after mite infestation reduced mites compared with the untreated control. In contrast, prophylactically applied sulfur and sulfur applied 14 days after mite infestation were not effective. When tested under field conditions with plots infested with viruliferous mites, there was no yield difference detected between untreated control plots and plots sprayed with insecticides. Select carbamates, organophosphates, and pyrethroids have a potential for use in greenhouse mite management when appropriate.


Sign in / Sign up

Export Citation Format

Share Document