scholarly journals Maize resistance to Sugarcane mosaic virus

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 542-544
Author(s):  
R. Pokorný ◽  
M. Porubová

Under greenhouse conditions 12 maize hybrids derived from crosses of four resistant lines with several lines of different level of susceptibility were evaluated for resistance to Czech isolate of Sugarcane mosaic virus (SCMV). These hybrids were not fully resistant to isolate of SCMV, but the symptoms on their newly growing leaves usually developed 1 to 3 weeks later in comparison with particular susceptible line, the course of infection was significantly slower and rate of infection lower. As for mechanisms of resistance, the presence of SCMV was detected by ELISA in inoculated leaves both of resistant and susceptible lines, but virus was detected 7 days later in resistant line. Systemic infection developed only in susceptible lines. These results indicate restriction of viral long distance movement in the resistant line.

1999 ◽  
Vol 12 (7) ◽  
pp. 628-632 ◽  
Author(s):  
Sek-Man Wong ◽  
Sharon Swee-Chin Thio ◽  
Michael H. Shintaku ◽  
Peter Palukaitis

The M strain of cucumber mosaic virus (CMV) does not infect squash plants systemically and moves very slowly in inoculated cotyledons. Systemic infection and an increase in the rate of local movement were observed when amino acids 129 or 214 of the M-CMV capsid protein (CP) were altered to those present in the Fny strain of CMV. While the opposite alterations to the CP of Fny-CMV inhibited systemic infection of squash, they did not show the same effects on the rates of both cell-to-cell and long-distance movement. However, the ability of CMV to infect squash systemically was affected by the rate of cell-to-cell movement.


1998 ◽  
Vol 88 (10) ◽  
pp. 1101-1107 ◽  
Author(s):  
Amit Gal-On ◽  
Dalia Wolf ◽  
Yongzeng Wang ◽  
Jean-Emmanuelle Faure ◽  
Meir Pilowsky ◽  
...  

Tomato breeding lines were transformed with a defective replicase gene from RNA 2 of cucumber mosaic virus (CMV). A total of 63 transformants from five tomato genotypes were evaluated for resistance to CMV strains. The responses of R1 transgenic offspring fit into three categories: fully susceptible lines (44%), fully resistant lines (8%), and an intermediate-type mixture of susceptible and resistant seedlings in variable proportions (48%). Further characterization of the response of two highly resistant lines was performed by mechanical inoculation, aphid transmission, or grafting experiments. No virus was detected in noninoculated leaves from these lines, although a low level of virus accumulated initially in the inoculated leaf. The homozygous R2 plants and further generations that were evaluated (up to R5) showed resistance to the Fny-CMV strain, two Israeli isolates tentatively classified as subgroup IA, and K-CMV (a representative of subgroup IB). These lines were partially resistant to LS-CMV (a representative of subgroup II) when a high-virus-titer inoculum was used. Expression of the viral transgene was verified in these lines; however, the expected translation product was not detectable. In grafting experiments, we demonstrated that CMV virions were blocked in their ability to move from infected rootstocks of nontransformed tomato or tobacco into the transgenic scions. Interestingly, virions could not move through a transgenic intersection into the upper scion. These results provide an additional indication that replicase-mediated resistance affects long-distance movement.


2019 ◽  
Vol 32 (3) ◽  
pp. 336-350 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Jeff Alexander ◽  
Adarsh K. Gupta ◽  
Roy French

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), distinct members in the family Potyviridae, are economically important wheat-infecting viruses in the Great Plains region. Previously, we reported that coinfection of wheat by WSMV and TriMV caused disease synergism with increased concentration of both viruses. The mechanisms of synergistic interaction between WSMV and TriMV and the effects of prior infection of wheat by either of these “synergistically interacting partner” (SIP) viruses on the establishment of local and systemic infection by the other SIP virus are not known. In this study, using fluorescent protein-tagged viruses, we found that prior infection of wheat by WSMV or TriMV negatively affected the onset and size of local foci elicited by subsequent SIP virus infection compared with those in buffer-inoculated wheat. These data revealed that prior infection of wheat by an SIP virus has no measurable advantage for another SIP virus on the initiation of infection and cell-to-cell movement. In TriMV-infected wheat, WSMV exhibited accelerated long-distance movement and increased accumulation of genomic RNAs compared with those in buffer-inoculated wheat, indicating that TriMV-encoded proteins complemented WSMV for efficient systemic infection. In contrast, TriMV displayed delayed systemic infection in WSMV-infected wheat, with fewer genomic RNA copies in early stages of infection compared with those in buffer-inoculated wheat. However, during late stages of infection, TriMV accumulation in WSMV-infected wheat increased rapidly with accelerated long-distance movement compared with those in buffer-inoculated wheat. Taken together, these data suggest that interactions between synergistically interacting WSMV and TriMV are asymmetrical; thus, successful establishment of synergistic interaction between unrelated viruses will depend on the order of infection of plants by SIP viruses.


1997 ◽  
Vol 87 (8) ◽  
pp. 792-798 ◽  
Author(s):  
W. Tang ◽  
S. M. Leisner

Arabidopsis thaliana ecotype En-2 was previously shown to be resistant to cauliflower mosaic caulimovirus (CaMV) isolate CM4-184. In this study, En-2 plants were screened with eight other isolates of CaMV to identify viruses capable of overcoming resistance and to determine if the mechanism of resistance was the same for each virus. En-2 resistance to most CaMV isolates was mediated by the same mechanism, i.e., preventing virus long-distance movement. One CaMV isolate, NY8153, was found that produced a severe systemic infection on En-2 plants. In addition, the CM1841 isolate was able to spread systemically through En-2 plants, to a limited extent, without producing visible symptoms. These data indicate that the resistance shown by En-2 plants is not an all-or-none phenomenon. En-2 plants were susceptible to turnip mosaic potyvirus, suggesting that resistance is specific to CaMV.


2004 ◽  
Vol 17 (5) ◽  
pp. 502-510 ◽  
Author(s):  
Carl Spetz ◽  
Jari P. T. Valkonen

Deletion of various portions, or insertion of six histidine residues (6×His) into various positions of the membrane-bound 6K2 protein (53 amino acids) of Potato virus A (PVA, genus Potyvirus), inhibited systemic infection in Nicotiana tabacum and N. benthamiana plants. However, a spontaneous mutation (Gly2Cys) that occurred in 6K2 adjacent to the 6×His insert placed between Ser1 and Gly2 enabled systemic infection in a single N. benthamiana plant. No symptoms were observed, but virus titers were similar to the symptom-inducing wild-type (wt) PVA. N. tabacum plants were not systemically infected, albeit virus propagation was observed in inoculated protoplasts. The 6×His/Gly2Cys mutant was reconstructed in vitro and serially propagated by mechanical inoculation in N. benthamiana. Following the third passage, a novel viral mutant appeared, lacking the last four His residues of the insert, as well as the Gly2 and Thr3 of 6K2. It infected N. tabacum plants systemically, and in the systemically infected N. benthamiana leaves, vein chlorosis and mild yellowing symptoms were observed, typical of wt PVA infection. The mutant virus accumulated to titers similar to wt PVA in both hosts. These results show that the PVA 6K2 protein affects viral long-distance movement and symptom induction independently and in a host-specific manner.


2016 ◽  
Vol 29 (9) ◽  
pp. 724-738 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Everlyne N. Wosula ◽  
Melissa Bartels ◽  
Gary L. Hein ◽  
Robert A. Graybosch

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein–tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.


2018 ◽  
Vol 108 (8) ◽  
pp. 1011-1018 ◽  
Author(s):  
Xue Feng ◽  
Gardenia E. Orellana ◽  
James R. Myers ◽  
Alexander V. Karasev

Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long-distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-12, bc-2, bc-22, and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-12, bc-2, and bc-22 alleles and their combinations, while no BCMV replication was found in inoculated leaves of cultivar IVT7214 carrying the bc-u, bc-2, and bc-3 genes, except for isolate 1755a, which was capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV, VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-12, bc-2, and bc-22 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when the alleles of bc-1 and bc-2 genes were combined together.


2012 ◽  
Vol 93 (5) ◽  
pp. 1093-1102 ◽  
Author(s):  
Claire Peltier ◽  
Elodie Klein ◽  
Kamal Hleibieh ◽  
Massimiliano D’Alonzo ◽  
Philippe Hammann ◽  
...  

Beet necrotic yellow vein virus (BNYVV) is a multipartite RNA virus. BNYVV RNA3 does not accumulate in non-host transgenic Arabidopsis thaliana plants when expressed using a 35S promoter. However, a 3′-derivative species has been detected in transgenic plants and in transient expression assays conducted in Nicotiana benthamiana and Beta macrocarpa. The 3′-derivative species is similar to the previously reported subgenomic RNA3 produced during virus infection. 5′ RACE revealed that the truncated forms had identical 5′ ends. The 5′ termini carried the coremin motif also present on BNYVV RNA5, beet soil-borne mosaic virus RNA3 and 4, and cucumber mosaic virus group 2 RNAs. This RNA3 species lacks a m7Gppp at the 5′ end of the cleavage products, whether expressed transiently or virally. Mutagenesis revealed the importance of the coremin sequence for both long-distance movement and stabilization of the cleavage product in vivo and in vitro. The isolation of various RNA3 5′-end products suggests the existence of a cleavage between nt 212 and 1234 and subsequent exonucleolytic degradation, leading to the accumulation of a non-coding RNA. When RNA3 was incubated in wheatgerm extracts, truncated forms appeared rapidly and their appearance was protein- and divalent ion-dependent.


Genome ◽  
2006 ◽  
Vol 49 (10) ◽  
pp. 1274-1282 ◽  
Author(s):  
Yongzhong Xing ◽  
Christina Ingvardsen ◽  
Raphael Salomon ◽  
Thomas Lübberstedt

The gene action of 2 sugarcane mosaic virus (SCMV) resistance loci in maize, Scmv1 and Scmv2, was evaluated for potyvirus resistance in an isogenic background. All 4 homozygous and 5 heterozygous isogenic genotypes were produced for introgressions of the resistant donor (FAP1360A) alleles at both loci into the susceptible parent (F7) genetic background using simple sequence repeat markers. For SCMV and maize dwarf mosaic virus (MDMV), virus symptoms appeared rapidly in the 3 homozygous genotypes, with susceptibility alleles fixed at 1 or both loci. Although the 9 isogenic genotypes revealed a high level of resistance to Zea mosaic virus (ZeMV), the same 3 homozygous genotypes were only partially resistant. This indicates that 1 resistance gene alone is not sufficient for complete resistance against SCMV, MDMV, and ZeMV. Scmv1 showed strong early and complete dominant gene action to SCMV, but it gradually became partially dominant. Scmv2 was not detected at the beginning, showing dominant gene action initially and additive gene action at later stages. Both genes interacted epistatically (for a high level of resistance, at least 1 resistance allele at each of both loci is required). This implies that double heterozygotes at the 2 loci are promising for producing SCMVresistant hybrids. Results are discussed with respect to prospects for isolation of SCMV and MDMV resistance genes.


Sign in / Sign up

Export Citation Format

Share Document