scholarly journals The impact of vegetation on hydraulic conductivity of sandy soil

2008 ◽  
Vol 2 (No. 2) ◽  
pp. 59-66 ◽  
Author(s):  
L. Lichner ◽  
T. Orfánus ◽  
K. Novákova ◽  
M. Šír ◽  
M. Tesař

The objective of this study was to assess the impact of vegetation on the hydraulic conductivity of sandy soil at the locality Ml&aacute;ky II at Sekule (southwest Slovakia). The measurements were taken on the surface of a meadow (Meadow site), a 30-year old Scots pine (Pinus sylvestris) forest (Forest site) and a glade (Glade site). In the glade, the measurements were also taken in the depth of 50 cm (Pure sand) to reduce the influence of vegetation on the soil properties. It was found that the unsaturated hydraulic conductivity k<sub>r</sub>(&minus;2 cm) as reduced due to the soil water repellency increased in the same order: Forest soil &lt; Glade soil &asymp; Meadow soil &lt; Pure sand, similarly as decreased the water drop penetration time t<sub>p</sub>: Forest soil &gt; Glade soil &asymp; Meadow soil &gt; Pure sand, which could refer to an inverse proportionality between the capillary suction and hydrophobic coating of the soil particles. The saturated hydraulic conductivity K<sub>s</sub> increased in the following order: Meadow soil &lt; Glade soil &asymp; Forest soil &lt; Pure sand; more than two-times higher K<sub>s</sub> at both the Forest and Glade sites than that at the Meadow site could be the result of both the patchy growth of vegetation with some areas of bare soil at the Glade site and the macropores (dead roots) in more homogeneous humic top-layer at the Forest site. The share B<sub>r</sub> of flux through the pores with radii r longer than approximately 0.5 mm decreased in the order: Forest soil &raquo; Meadow soil &gt; Glade soil &raquo; Pure sand, revealing the prevalence of preferential flow through macropores (dead roots) in the Forest site and a negligible share of macropores in the Pure sand.

Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Ľubomír Lichner ◽  
Jozef Capuliak ◽  
Natalia Zhukova ◽  
Ladislav Holko ◽  
Henryk Czachor ◽  
...  

AbstractPines, used for sand dune stabilization, can influence the hydrophysical parameters and water flow in an aeolian sandy soil considerably, mainly due to soil water repellency. Two sites, separated by distance of about 20 m, formed the basis of our study. A control soil (“Pure sand“) with limited impact of vegetation or organic matter was formed at 50 cm depth beneath a forest glade area. This was compared to a “Forest soil” in a 30-year old Scots pine (Pinus sylvestris) forest. Most of the hydrophysical parameters were substantially different between the two soil surfaces. The forest soil was substantially more water repellent and had two-times the degree of preferential flow compared to pure sand. Water and ethanol sorptivities, hydraulic conductivity, and saturated hydraulic conductivity were 1%, 84%, 2% and 26% those of the pure sand, respectively. The change in soil hydrophysical parameters due to soil water repellency resulted in preferential flow in the forest soil, emerging during a simulated heavy rain following a long hot, dry period. The wetting front established in pure sand exhibited a form typical of that for stable flow. Such a shape of the wetting front can be expected in the forest soil in spring, when soil water repellency is alleviated substantially.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
L’ubomír Lichner ◽  
Paul Hallett ◽  
Debbie Feeney ◽  
Olívia Ďugová ◽  
Miloslav Šír ◽  
...  

AbstractNumerous recent laboratory studies have shown that vegetation can influence soil water flow by inducing very low levels of water repellency. In this study we extended on this previous research by developing a field-based test using a miniature infiltrometer to assess low levels of water repellency from physically based measurements of liquid flow in soil. The field-based test was verified through a simple laboratory experiment and then applied to determine the impact of vegetation and antecedent soil water content. The soil hydraulic properties determined were hydraulic conductivity, sorptivity, as well as the persistence and index of water repellency. Tests were conducted following a dry spell and wet spell on (1) forest soil (0 cm depth), (2) glade soil (0 cm depth) and (3) glade soil (50 cm depth). It was found that both the persistence and index of water repellency, R, decreased in the order as follows: forest soil > glade soil (0 cm) > glade soil (50 cm) for both dry and wet spell. The range of values of R was 0.28 (wettable) to 360 (highly water repellent), which affected hydraulic conductivity k r(−2 cm). R increased and hence k r(−2 cm) decreased in the order: forest soil < glade soil (0 cm) < glade soil (50 cm) for both the dry and wet spell. There were clear interactions between vegetation and changes to water flow caused by presence of repellency.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Viliam Novák ◽  
Ľubomír Lichner ◽  
Bin Zhang ◽  
Karol Kňava

AbstractThe impact of heating on the peristence of water repellency, saturated hydraulic conductivity, and water retention characteristics was examined on soils from both forest and meadow sites in southwest Slovakia shortly after a wet spell. The top 5 cm of meadow soils had an initial water drop penetration time WDPT at 20°C of 457 s, whereas WDPT in the pine forest was 315 s for the top 5 cm and 982 s if only the top 1 cm was measured. Heating soils at selected temperatures of 50, 100, 150, 200, 250 and 300°C caused a marked drop in water drop penetration time WDPT from the initial value at 20°C. However, samples collected in different years and following an imposed cycle of wetting and drying showed much different trends, with WDPT sometimes initially increasing with temperature, followed by a drop after 200–300°C. The impact of heating temperature on the saturated hydraulic conductivity of soil was small. It was found for both the drying and wetting branches of soil water retention curves that an increase in soil water repellency resulted in a drop in soil water content at the same matric potential. The persistence of soil water repellency was strongly influenced by both the sampling site and time of sampling, as it was characterized by the results of WDPT tests.


2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S155-S164 ◽  
Author(s):  
N.A Wahl

Soil water repellency has important consequences for ecological and hydrological properties of soils and usually retards infiltration capacity and induces preferential flow. This phenomenon has been known to occur on a wide range of sites under a variety of climatic conditions. The objective of this study was to investigate and characterize soil water repellency on forest sites with identical substrate and climatic conditions, differing in tree age and species. In the Vester Torup Klitplantage, an area comprising a conifer dominated forest plantation stocking on sandy deposits in a coastal setting near the Jammer Bay in north-western Jutland/Denmark, four different forest plots were investigated for water repellency effects four times in 2005. To measure soil water repellency, the water drop penetration time test and the critical surface tension test were carried out. Both tests revealed a seasonal variability in water repellency, exhibiting the highest water repellency for the upper 10 cm of the soil during the summer months, whereas the variability between the different plots seems to be less significant. There was no coherence between humus forms, thickness of litter layer and water repellency.


2020 ◽  
Author(s):  
Peter Surda ◽  
Lubomir Lichner ◽  
Viliam Nagy

&lt;p&gt;Abandonment of agricultural lands in recent decades is occurring mainly in Europe, North America and Oceania, and changing the fate of landscapes as the ecosystem recovers during fallow stage. The objective of this study was to find the impact of secondary succession in abandoned fields on some parameters of acidic sandy soils in the Borsk&amp;#225; n&amp;#237;&amp;#382;ina lowland (southwestern Slovakia). We investigated soil chemical (pH and soil organic carbon content), hydrophysical (water sorptivity, and hydraulic conductivity), and water repellency (water drop penetration time, water repellency cessation time, repellency index, and modified repellency index) parameters, as well as the ethanol sorptivity of the studied soils. Both the hydrophysical and chemical parameters decreased significantly during abandonment of the three investigated agricultural fields. On the other hand, the water repellency parameters increased significantly, but the ethanol sorptivity did not change during abandonment. As the ethanol sorptivity depends mainly on soil pore size, the last finding could mean that the pore size of acidic sandy soils did not change during succession.&lt;/p&gt;


2016 ◽  
Vol 20 (3) ◽  
pp. 1301-1317 ◽  
Author(s):  
Katharina F. Gimbel ◽  
Heike Puhlmann ◽  
Markus Weiler

Abstract. Climate change is expected to impact the water cycle and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually when projecting drought impacts on hydrological systems, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey-, loamy- and sandy-textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by water drop penetration time (WDPT) tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the drought history or, more generally, the climatic conditions of a soil in the past are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; furthermore, drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Marián Homolák ◽  
Jozef Capuliak ◽  
Viliam Pichler ◽  
Ľubomír Lichner

AbstractThe objective of this study was to estimate the hydraulic conductivity of sandy soil under different plant cover at the locality Mláky II at Sekule (southwest Slovakia). Two sites were demarcated at the locality, with mainly moss species at glade site, and pine forest at forest site. The estimation of unsaturated hydraulic conductivity was conducted by (a) minidisk infiltrometer and (b) the analysis of a dye tracer total resident concentration. The latter approach assumed the applicability of the stochastic—convective flow theory in the sandy soil. In the dye tracer experiment, two plots (1 × 1 m each) were established in both sites, and 100 mm of dye tracer (Brilliant Blue FCF) solution was applied on the soil surface. Similar results were obtained in both plots, with more than 70 % area of horizons stained in the depth of 30–50 cm. In some cases, the predicted and measured hydraulic conductivity were found within an order of magnitude, thus revealing similar impact of different plant cover on hydraulic properties of sandy soil studied. In contrast to sandy soils used for agriculture, the influence of the plant/surface humus and topsoil interface extended in the form of a highly heterogeneous matrix flow to the depth of 50–60 cm, where it was dampened by horizontal layering.


Soil Research ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 13 ◽  
Author(s):  
Jessica T. Heath ◽  
Chris J. Chafer ◽  
Thomas F. A. Bishop ◽  
Floris F. Van Ogtrop

Soil properties can be considerably modified as a result of wildfire. This study examined the impact of wildfire on total carbon and water repellency at two study sites, namely Cranebrook and Wentworth Falls, located 45 and 75 km west of Sydney, Australia, respectively. Within each study site, we measured soil properties at two depth intervals from five burn severity classes along 15 transects (10 sample points per transect). Samples were taken 6, 12 and 36 months after wildfire. Soil total carbon was measured using LECO combustion analysis and potential soil water repellency was determined using water drop penetration time. Two-way analysis of variance (ANOVA) was used to analyse the results, with burn severity and time as factors. Burn severity had a significant effect on both soil total carbon and water repellency at both study sites, whereas time was only significant for soil carbon at Wentworth Falls. Soil total carbon and water repellency were variable through time due to local environmental variables, such as rainfall and temperature. The relationship between soil total carbon and water repellency was strong for Cranebrook in the surface soil (r = 0.62) and lower in the subsurface soil (r = 0.41), but weaker at Wentworth Falls, with values of r = 0.22 and r = 0.15 in the surface and subsurface soils respectively.


2012 ◽  
Vol 60 (4) ◽  
pp. 309-318 ◽  
Author(s):  
Ľubomír Lichner ◽  
Ladislav Holko ◽  
Natalia Zhukova ◽  
Karsten Schacht ◽  
Kálmán Rajkai ◽  
...  

This study tested the hypothesis that the changes in hydrophysical parameters and heterogeneity of water flow in an aeolian sandy soil have the same trend as the process of succession. Three sub-sites were demarcated at the area of about 50 m x 50 m. The first sub-site was located at the pine-forest glade covered with a biological soil crust and represented the initial stage of succession. The second sub-site was located at the grassland and represented more advanced stage of succession. The third sub-site was located at the pine forest with 30-year old Scots pines and represented advanced stage (close to climax) of succession. The sandy soil at the surface was compared to the soil at the pine-forest glade at 50 cm depth, which served as a control because it had a similar texture but limited impact of vegetation or organic matter. It was found that any type of vegetation cover studied had a strong influence on hydrophysical parameters and heterogeneity of water flow in an aeolian sandy soil during hot and dry spells. The changes in some hydrophysical parameters (WDPT, R, k(-2 cm), Sw(-2 cm), ECS and DPF) and heterogeneity of water flow in an aeolian sandy soil had the same trend as the process of succession, but it was not so in the case of Ksand Se(-2 cm), probably due to the higher content of smaller soil particles in grassland soil in comparison with that content at other sub-sites. Both the persistence and index of water repellency of pure sand differed significantly from those of grassland, glade and forest soils. The highest repellency parameter values in forest soil resulted in the lowest value of both the water sorptivity and hydraulic conductivity in this soil in comparison with other soils studied. The highest value of ethanol sorptivity and the lowest value of saturated hydraulic conductivity in the grassland soil in comparison with other soils studied were due to the higher content of fine-grained (silt and clay) particles in the grassland soil. The effective cross section and the degree of preferential flow of pure sand differed significantly from those of grassland, glade and forest soils. The change in soil hydrophysical parameters due to soil water repellency resulted in preferential flow in the grassland, glade and forest soils, while the wetting front in pure sand area exhibited a form typical of that for stable flow. The latter shape of the wetting front can be expected in the studied soils in spring, when soil water repellency is alleviated substantially. The columnar shape of the wetting front, which can be met during heavy rains following long dry and hot spells, was attributed to redistribution of applied water on the surface to a series of micro-catchments, which acted as runon and runoff zones.


Sign in / Sign up

Export Citation Format

Share Document