scholarly journals Soil and plant pollution by potentially toxic elements in Slovakia

2011 ◽  
Vol 51 (No. 6) ◽  
pp. 243-248 ◽  
Author(s):  
J. Kobza

The Problem of soil and plant pollution by heavy metals in Slovakia is evaluated in this study. The measured data on the main risk elements have been obtained from a soil-monitoring grid in Slovakia, which consists of 318 agricultural sites. Analytical procedures of Cd, Pb, Cr, Ni, Zn, Cu (extracted by 2 mol/l HNO<sub>3</sub> and by 0.05 mol/l EDTA) as well as the total content of the described elements including Hg have been used for soil samples. Also the plants collected at the same sampling sites were analysed for their Cd, Pb, Cr and Hg contents. On the basis of the obtained results it may be concluded that significant pollution was determined only on 0.4% of the total soil cover in Slovakia. The significant correlation was determined between the soil available heavy metal content (extracted by 0.05 mol/l EDTA) and plant content. Potentially toxic elements were accumulated in the plant biomass only on heavily polluted soils

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1594
Author(s):  
Oliva Atiaga ◽  
Jenny Ruales ◽  
Luís Miguel Nunes ◽  
Xosé Luis Otero

The concentration of trace toxic metals (Cr, Zn, As, Pb, Cd, Cu, and Ni) in soil and rice plants, including the stems, leaves, and grain, from the main rice-producing provinces in Ecuador, was determined. Additionally, the soils were analyzed to determine their properties, composition, total content, bioavailable fraction, and geochemical fractions of toxic elements. Approximately 30% of soil samples in the case of Cr and Cu and 10% of samples in the case of Ni exceeded the legal thresholds for Ecuador. Moreover, for Cr and Cu, approximately 4% and 13% of samples, respectively, exceeded the threshold value of 100 mg kg−1 proposed for these two elements in several international regulations. Concentrations of As, Pb, and Cd in the soils were below the threshold values established both by Ecuadorian laws and by other countries. The concentrations of metals in rice plants did not correlate linearly with the total metal concentrations in the soil, nor with their bioavailability. However, the bioconcentration factors for As, Cd, Cu, Ni, and Zn could be predicted from bioavailability by a power law with exponents ranging from −0.724 to −1.625, which is typical of accumulator plants, where trace metal homeostasis plays an important role.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 999
Author(s):  
Magdalena Jastrzębska ◽  
Marta K. Kostrzewska ◽  
Agnieszka Saeid ◽  
Wiesław P. Jastrzębski

Phosphorus (P)-rich secondary raw materials can provide a valuable base for modern mineral fertilizers, provided that the new formulations do not load the soil–plant system with potentially toxic elements. Fertilizers from sewage sludge ash (SSA) and/or animal bones, activated by phosphorus-solubilizing bacteria (Bacillus megaterium or Acidithiobacillus ferrooxidans), were tested in field experiments in north-eastern Poland. The reference provided treatments with superphosphate and treatment without phosphorus fertilization. In one experiment, all P-fertilizers were applied at a P dose of 21 kg·ha−1, and in the other three experiments, three P doses were adopted: 17.6, 26.4, and 35.2 kg·ha−1. The effect of recycled fertilizers on the content of arsenic (As), chromium (Cr), nickel (Ni), copper (Cu), and zinc (Zn) in the soil, in wheat grain and straw (test plant), weeds, and post-harvest residues was investigated. The application of recycled fertilizers in P amounts up to 35.2 kg·ha−1 did not change the As, Cr, Ni, Cu, or Zn contents in the soil and plant biomass. The contents of these elements in soil were below the permissible levels for arable land in Poland. Their concentrations in wheat grain and straw did not exceed the permissible or suggested limits for plant material to be used for food and feed, while in the weed and post-harvest residue biomass, they usually fell within the biological plant variability ranges.


Author(s):  
Fangmeng Xiao ◽  
Zhanying Gu ◽  
Arbi Sarkissian ◽  
Yaxin Ji ◽  
RuonanYang ◽  
...  

AbstractPotentially toxic elements (PTEs) pollution has become a serious environmental threat, particularly in developing countries such as China. In response, there is a growing interest in phytoremediation studies to identify plant species as designated hyperaccumulators of PTEs in polluted soils. Poinsettia was selected as a candidate species for phytoremediation of six PTEs (Zn, Pb, Hg, Cr, As, Cu) in this study. A pot cultivation experiment (randomized incomplete block experimental design with 5 treatments and 4 blocks) was conducted using contaminated soils gathered from an industrial area in southcentral China. The bioaccumulation factor (BAF), translocation factor (TF), and bioconcentration factor were analyzed to determine the phytoremediation potential of poinsettia potted in different ratios of polluted soils. One-way ANOVA with post-hoc Tukey’s test showed that poinsettia had significant uptake of Zn, Pb, Cu (BAF < 1 and TF < 1, p < 0.05) and Hg (BAF < 1 and TF > 1, p < 0.05). Poinsettias can therefore effectively accumulate Zn, Pb, and Cu in their lateral roots while extracting and transferring Hg into their leaves. Moreover, poinsettia exhibited tolerance towards As and Cr. Interestingly, it was also observed that PTEs can inhibit the height of potted poinsettia at a certain concentration.


Geologija ◽  
2020 ◽  
Vol 63 (2) ◽  
pp. 271-280
Author(s):  
Janez Turk ◽  
Janko Urbanc ◽  
Ana Mladenovič ◽  
Alenka Pavlin ◽  
Primož Oprčkal ◽  
...  

By using recycled waste in construction, natural materials are being replaced, thus establishing a circular economy at the local level. An important aspect is also the conservation of natural resources. This is especially important in case of earthworks (embankments, backfills), which are large consumers of materials. Compared to natural aggregates and earth, geotechnical composites based on recycled materials can contain a higher total content of potentially toxic elements (heavy metals, chloride, sulphate, fluoride, organic pollutants etc.). The prerequisite for beneficial use of such composites is that the potentially toxic elements are immobilized in the composites, meaning that they are chemically inert. Potential environmental impacts, especially those associated with transfer of potentially toxic elements from new geotechnical composites into soil (aquifer respectively), are usually evaluated on laboratory scale, while their behaviour in real environment is usually poorly investigated. For this reason, there is a demand for the development of sensitive, reliable, and cost and time efficient monitoring tools for determining mass flows of potentially toxic elements from building materials, for example geotechnical composites, which are under the influence of various environmental factors. This paper presents the construction of field laboratory, based on a system of pan lysimeters. The lysimeters are used to collect leachate from geotechnical composites based on recycled materials. They are constructed in a way to be relatively low cost and at the same time large enough to representatively reflect the processes in geotechnical fills. Obtained data on the amount and quality of leachate can be used as a basis for the study of immobilization processes and for water balance. Moreover, this data will be used as input in the geochemical numerical model for the simulation of transport of potentially toxic elements released from geotechnical fills in different types of aquifers (alluvial aquifer with intergranular porosity, aquifer in consolidated rocks with fissure porosity).


2014 ◽  
Vol 25 (4) ◽  
pp. 35-40
Author(s):  
Jarosław Kaszubkiewicz ◽  
Ewa Pora ◽  
Dorota Kawałko ◽  
Paweł Jezierski ◽  
Bernard Gałka

Abstract The aim of this study was to demonstrate that alluvial sediments of Wrocław ice-marginal Valley are characterized by higher con-centrations of metallic elements in relation to the adjacent areas of different soil cover genesis. Studies of zinc and arsenic content in soils were carried out in six municipalities of Średzki district. A total of 117 soil samples from arable land was collected: 80 from Średzka Upland and 37 from Wrocław ice-marginal Valley The process of accumulation of heavy metals in alluvial sediments in the Wocław ice-marginal Valley is so effective that, despite the heavier grain size composition of the soil cover immediately adjacent to Średzka Upland, zinc and arsenic concentrations are higher in the alluvial soils.


2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Saba Shoukat ◽  
Shahla Nazneen ◽  
Sardar Khan ◽  
Urooj Zafar

This study was carried out to determine potentially toxic element (PTE) contamination and their potential ecological risk factors in shooting range soil. For this purpose soil samples were collected from different locations (left side, right side, shooting point, middle, and stop-butt) from the shooting range of Frontier Corps Training Centre (FCTC) present in Warsak, Peshawar. The soil samples were analyzed for pH, electrical conductivity (EC) and potentially toxic elements including Cd, Cr, Ni, Pb, and Zn. The strong acids digested extracts were analyzed using atomic absorption spectrophotometry to determine the concentrations of selected PTEs. The concentration of Pb was found to be maximum at stop-butt i.e. 2049 mg/kg and exceeded the United States Environmental Protection Agency (US-EPA) critical value of 400 mg/kg, while its concentrations at left, right, shooting point and middle were 14.0 mg/kg, 18.8 mg/kg, 47.4 mg/kg, and 18.2 mg/kg, respectively and exceeded the background level of normal soils which is 10 mg/kg for Pb. This study revealed that the shooting range soil was highly contaminated with Pb, and very high contamination factor and potential ecological risk for Pb was observed at stop-butt, very high contamination factor and potential ecological risk for Cd, while moderate contamination factor for Zn was observed at all locations of the shooting range. In Pakistan, the environmental perspective of shooting range soils is overlooked and there is a need to take steps to avoid such contamination of soils with Pb and other PTEs that can enter into food chains and can also leach to contaminate the aquifer. Replacement of vegetation of shooting range with PTE tolerant species, addition of soil conditioners and uncontaminated soil would reduce the mobility of these contaminants into aerial portions of plants and protect the groundwater contamination.


Author(s):  
Oguh C. Egwu ◽  
Ugwu C. Victor ◽  
Uzoefuna C. Casmir ◽  
Usman Sa’adat ◽  
Nkwocha C. Chibueze ◽  
...  

This study investigated the concentrations of heavy metals (As, Cd, Cr, Cu, Hg and Pb) in African Giant Land Snail (AGLS) treated with different soil samples dumpsite (A), mining site (B) and control soil (C) (a reserve area where no activities) use in farming AGLS and also to ascertain if they are within permissible limits and its ecological risk assessment on the consumption. Soil samples; at site A, B and C was collected at 0-30 cm depth with the aid of soil auger and were used for AGLS farming, to ascertain whether the potentially toxic elements (PTEs) concentration were within the permissible limits and their ecological risk assessment on AGLS consumption. A total of 54 juvenile snails of similar weights was used for the study. The experiment lasted for six month (182 days), during which the snails were subjected to similar dietary reign and equal quantity of feed. Snail’s morphological characteristics such as Weight, length and diameter of its shell were measured after farming. The soil samples were analysed for PTEs before and after farming, and snail were also analyzed for PTEs after farming for six month using atomic absorptions spectrophotometer (AAS). The ecological health risk from the consumption of these snails was assessed using standard methods and formulas. The result of different soil before and after farming shows a significant different (P<0.05) between the activities sites (dump and mining) and the control site. The concentration of PTEs (As, Cd, Cr, Cu, Hg, and Pb) in snails treated with dump site soil were 3.05, 3.89, 3.60, 2.89, 3.98, and 2.55 mg/kg, and snails treated with mining site soil recorded 2.73, 2.74, 3.91, 4.96, 2.88 and 4.82 mg/kg. The values were greater than the maximum permissible limit of 0.5, 2.0, 0.3, 0.04, 0.1 and 0.1 mg/kg respectively recommended by FAO/WHO compared to the control. The study concludes that snail bioaccumulate toxic elements from the soil used in rearing them which is deleterious to humans when consumed. Also the DIM, HQ, HI on the consumption of snail reared with dumpsite, mining site soils are nearly free of risks, but continuous consumption can lead to bioaccumulation in the food chain.


Author(s):  
Shufeng She ◽  
Bifeng Hu ◽  
Xianglin Zhang ◽  
Shuai Shao ◽  
Yefeng Jiang ◽  
...  

Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1, 68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these elements, only Cd and Hg showed significant accumulation compared with their background values. The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and then showed a decreasing trend. The results obtained from this study will provide guidance for the prevention and control of soil pollution in the Yangtze River Delta.


Sign in / Sign up

Export Citation Format

Share Document