scholarly journals Evaluation of antifungal activity of sodium salts against onion basal rot caused by Fusarium oxysporum f.sp. cepae

2014 ◽  
Vol 50 (No. 1) ◽  
pp. 19-25 ◽  
Author(s):  
M. Türkkan ◽  
I. Erper

The efficacy of twelve sodium salts as possible alternatives to synthetic fungicides for the control of onion basal rot caused by&nbsp;Fusarium oxysporum&nbsp;f.sp.&nbsp;cepae&nbsp;was evaluated.&nbsp;In vitro&nbsp;tests showed that there were significant differences between the inhibitory effects of sodium salts on the mycelial growth (P&nbsp;&le; 0.05) and 2% (w/v) concentrations of sodium metabisulfite and sodium fluoride completely inhibited mycelial growth of the fungus, while other salts did not. Sodium metabisulfite and sodium phosphate monobasic had lower pH values than the other salts. Unlike sodium metabisulfite, sodium phosphate monobasic could not decrease the mycelial growth. The ED<sub>50</sub>, minimum inhibition concentration (MIC), and minimum fungicidal concentration (MFC) values indicated that sodium metabisulfite was more inhibitory to the fungus compared to sodium fluoride. In soil tests, inhibitory effect of sodium metabisulfite on the fungus was higher than that of sodium fluoride, where sodium metabisulfite completely inhibited mycelial growth at even 0.4% concentration.

2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 45
Author(s):  
Andrea Angarita-Rodríguez ◽  
Diego Quiroga ◽  
Ericsson Coy-Barrera

There is a continuous search for more reliable and effective alternatives to control phytopathogens through different strategies. In this context, indole-containing phytoalexins are stimuli-induced compounds implicated in plant defense against plant pathogens. However, phytoalexins’ efficacy have been limited by fungal detoxifying mechanisms, thus, the research on bioisosteres-based analogs can be a friendly alternative regarding the control of Fusarium phytopathogens, but there are currently few studies on it. Thus, as part of our research on antifungal agents, a set of 21 synthetic indole-containing phytoalexin analogs were evaluated as inhibitors against the phyopathogen Fusarium oxysporum. Results indicated that analogs of the N,N-dialkylthiourea, N,S-dialkyldithiocarbamate and substituted-1,3-thiazolidin-5-one groups exhibited the best docking scores and interaction profiles within the active site of Fusarium spp. enzymes. Vina scores exhibited correlation with experimental mycelial growth inhibition using supervised statistics, and this antifungal dataset correlated with molecular interaction fields after CoMFA. Compound 24 (tert-butyl (((3-oxo-1,3-diphenylpropyl)thio)carbonothioyl)-l-tryptophanate), a very active analog against F. oxysporum, exhibited the best interaction with lanosterol 14α-demethylase according to molecular docking, molecular dynamics and molecular mechanic/poisson-boltzmann surface area (MM/PBSA) binding energy performance. After data analyses, information on mycelial growth inhibitors, structural requirements and putative enzyme targets may be used in further antifungal development based on phytoalexin analogs for controlling phytopathogens.


2018 ◽  
Vol 30 (1) ◽  
pp. 75 ◽  
Author(s):  
Gul B. Poussio ◽  
Manzoor A. Abro ◽  
Jamal U. D. Hajano ◽  
Muhammad I. Khaskheli ◽  
Khalid I. Rajput ◽  
...  

Fusarium oxysporum f.sp. lycopersici (FOL) is a highly destructive fungal pathogen of tomato crop causing wilt disease which may reduce 10 to 90% yield. In Pakistan, tomato is widely grown in Sindh province, major territories are district Hyderabad, Tando Allahyar and Mirpurkhas. Thus, surveys of these territories were conducted to record intensity of the disease and confirm etiology. Furthermore, potential of different botanical pesticides and commercially available fungicides were tested to inhibit mycelial growth of the causal fungus. The experiment was laid down with complete randomized block design with three replications. The results showed that the disease was occurring in all locations with the range of 8-47 % incidence. F. oxysporum f.sp. lycopersici was predominantly isolated from the collected disease sample during survey and pathogenic nature of the fungus was tested on the tomato Golo variety through soil drenching method. The disease incidence of 30 and 42 % (72 % as total) was recorded in inoculated tomato plants at 20 and 40 DAI, respectively. Maximum (67 %) inhibition of the fungal growth was found by neem seed extracts at higher dose of 8 % concentration followed by 63 % with neem seeds and Eucalyptus at 6 and 8 %, respectively. Alternatively, the Nativo 75 WG fungicide was found most effective in reducing the redial mycelial growth of target fungus followed by Topsin-M at 1000 ppm where as Aliette and Melodedue fungicides were found least effective under in-vitro conditions.


2017 ◽  
Author(s):  
Andrew D. Armitage ◽  
Andrew Taylor ◽  
Maria K. Sobczyk ◽  
Laura Baxter ◽  
Bethany P.J. Greenfield ◽  
...  

AbstractA reference-quality assembly of Fusarium oxysporum f. sp. cepae (Foc), the causative agent of onion basal rot has been generated along with genomes of additional pathogenic and non-pathogenic isolates. Phylogenetic analysis confirmed a single origin of the Foc pathogenic lineage.Genome alignments with other F. oxysporum ff. spp. and non pathogens revealed high levels of syntenic conservation of core chromosomes but little synteny between lineage specific (LS) chromosomes. Four LS contigs in Foc totaling 3.9 Mb were designated as pathogen-specific (PS). A two-fold increase in segmental duplication events was observed between LS regions of the genome compared to within core regions or from LS regions to the core.RNA-seq expression studies identified candidate effectors expressed in planta, consisting of both known effector homologs and novel candidates. FTF1 and a subset of other transcription factors implicated in regulation of effector expression were found to be expressed in planta.


2020 ◽  
Vol 9 (11) ◽  
pp. e4079119913
Author(s):  
Thiago Anchieta de Melo ◽  
Ilka Márcia Ribeiro de Souza Serra ◽  
Ingrid Tayane Vieira da Silva do Nascimento

This work aimed to verify the effect in vitro, of Ascophyllum nodosum (AN) seaweed extract on the morphology and cellulolytic capacity of the fungus Fusarium oxysporum f. sp. vasinfectum (FOV). Thus, the fungus was placed in contact with different doses of the extract, being these: 0, 0.5, 1.0, 2.0, 4.0 and 8.0%. It was verified that the product, with increasing doses, progressively induced mycelial growth of the fungus, as measured by the diameter of the colonies and fresh mass of mycelium grown in PD (potato-dextrose) culture medium. This result was also corroborated by the progressive increase in the activity of the β-1,3-glucanase and chitinase enzymes required during the hypha elongation process. However, the AN extract progressively reduced FOV sporulation with increasing doses. Furthermore, the cellulolytic capacity of the phytopathogen was significantly reduced in the presence of the algae extract, which was measured by the activity of the enzymes endo-β-1,4-glucanase, exo-β-1,4-glucanase and β-glucosidase. Thus, these facts constitute important information for the management of fusariosis, since the inhibition of sporulation and decreasing degradation capacity of the cellulose by the pathogen, can translate into declined disease in compatible host-pathogen interactions.


Author(s):  
K. L. Nandeesha ◽  
Shalini N. Huilgol ◽  
Geeta D. Goudar

Chickpea (Cicer arietinum L.) is one of the most important pulse crop grown all over India. Chickpea wilt caused by Fusarium oxysporum f. sp. ciceri is one of the major disease on chickpea in Northern Karnataka, which is soil and seed borne. Heavy inoculum in the soil and favorable environment condition results in the death of infected plant and therefore total yield loss.In this study, three antagonists, and seven botanicals were studied against Fusarium oxysporum f. sp. ciceri causing chickpea wilt. In vitro studies found that among the botanicals, turmeric rhizome extract gave maximum per cent inhibition of mycelial growth (26.73%) and least per cent inhibition of mycelial growth (9.96%) was observed in cassia tora at 15 per cent concentration. Among the antagonists, Trichoderma harzianum was effective in per cent inhibition of Fusarium oxysporum f. sp. ciceri with (76.47%) and Pseudomonas fluorescens found least effective in per cent mycelial inhibition with (34.41%).


2009 ◽  
Vol 89 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Mélanie R. Mecteau ◽  
Joseph Arul ◽  
Russell J. Tweddell

The objectives of this study were (1) to evaluate the effect of different salts on the in vitro development of Fusarium solani var. coeruleum, and (2) to evaluate the efficacy of the salts for reducing dry rot severity caused by the pathogen in potato tubers. The study showed that several salts significantly inhibited the mycelial growth of F. solani var. coeruleum. Aluminium acetate, aluminium chloride, sodium benzoate, sodium metabisulfite, potassium sorbate and trisodium phosphate completely inhibited mycelial growth. Exposure of F. solani var. coeruleum conidia to aluminium acetate, potassium sorbate, sodium benzoate, sodium metabisulfite or trisodium phosphate at 0.2 M resulted in 100% mortality of the conidia after 1 h while aluminium chloride and aluminium lactate caused 100% mortality after an exposure of 24 h. In order to evaluate the effect of salts on potato dry rot development, F. solani var. coeruleum-inoculated tubers were treated with the different salts and disease severity was evaluated following an incubation period of 7 d. Among the test salts, only aluminium chloride caused a significant reduction in potato dry rot compared with the control. The study points out the possibility of using aluminium chloride to control potato dry rot.


2001 ◽  
Vol 67 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Yoshinori MATSUDA ◽  
Yuichiro IIDA ◽  
Takeshi SHINOGI ◽  
Koji KAKUTANI ◽  
Teruo NONOMURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document