scholarly journals Indole-Containing Phytoalexin-Based Bioisosteres as Antifungals: In Vitro and In Silico Evaluation against Fusarium oxysporum

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 45
Author(s):  
Andrea Angarita-Rodríguez ◽  
Diego Quiroga ◽  
Ericsson Coy-Barrera

There is a continuous search for more reliable and effective alternatives to control phytopathogens through different strategies. In this context, indole-containing phytoalexins are stimuli-induced compounds implicated in plant defense against plant pathogens. However, phytoalexins’ efficacy have been limited by fungal detoxifying mechanisms, thus, the research on bioisosteres-based analogs can be a friendly alternative regarding the control of Fusarium phytopathogens, but there are currently few studies on it. Thus, as part of our research on antifungal agents, a set of 21 synthetic indole-containing phytoalexin analogs were evaluated as inhibitors against the phyopathogen Fusarium oxysporum. Results indicated that analogs of the N,N-dialkylthiourea, N,S-dialkyldithiocarbamate and substituted-1,3-thiazolidin-5-one groups exhibited the best docking scores and interaction profiles within the active site of Fusarium spp. enzymes. Vina scores exhibited correlation with experimental mycelial growth inhibition using supervised statistics, and this antifungal dataset correlated with molecular interaction fields after CoMFA. Compound 24 (tert-butyl (((3-oxo-1,3-diphenylpropyl)thio)carbonothioyl)-l-tryptophanate), a very active analog against F. oxysporum, exhibited the best interaction with lanosterol 14α-demethylase according to molecular docking, molecular dynamics and molecular mechanic/poisson-boltzmann surface area (MM/PBSA) binding energy performance. After data analyses, information on mycelial growth inhibitors, structural requirements and putative enzyme targets may be used in further antifungal development based on phytoalexin analogs for controlling phytopathogens.

2010 ◽  
Vol 50 (1) ◽  
pp. 93-97 ◽  
Author(s):  

Effect of Fungal Metabolites and Amendments on Mycelial Growth ofRhizoctonia SolaniA shift towards organic farming suggests amalgamation of organic resources against soil borne plant pathogens. The influence of metabolites of most ubiquitousAspergillusspp., organic amendment extracts and their combined effect withTrichoderma virenswere evaluatedin vitroagainstRhizoctonia solani.The minimum (36.1 mm) growth was attained byR. solaniin co-culture withA. niger.The maximum (42.3 mm) inhibition of mycelial growth of the test organism was observed with culture filtrate ofA. ochraceousfollowed byA. niger, A. fumigatus, A. flavusandA. terreus.Among organic amendment extractants, castor cake exhibited an additive effect on the growth ofT. virens, however, the maximum (41.8 mm) suppressive effect onR. solaniwas observed with vermicompost. With the advance in time, the effect of organic amendment extracts increased markedly. Inhibition potential of culture filtrate mixturte ofA. niger+T. virensandA. ochraceous+T. virensagainstR. solaniwas significantly higher in comparison to the other combinations.


2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1767-1774 ◽  
Author(s):  
E. Gachango ◽  
L. E. Hanson ◽  
A. Rojas ◽  
J. J. Hao ◽  
W. W. Kirk

A survey of seed potato tubers in Michigan seed production storage facilities was carried out during 2009 and 2010. Fusarium spp. associated with tuber dry rot symptoms were identified to species and tested for sensitivity to difenoconazole, fludioxonil, and thiabendazole. Symptomatic tubers (n = 370) were collected from a total of 51 seed lots, from which 228 isolates of Fusarium were recovered and identified to 11 species. Fusarium oxysporum was the most commonly isolated species (30.3%), followed by F. equiseti (19.3%). F. sambucinum and F. avenaceum were third most prevalent (each at 13.6%). Less prevalent species (each at 4 to 10%) included F. cerealis, F. solani, and F. acuminatum; and species present at ≤3% included F. sporotrichioides, F. torulosum, F. tricinctum, and F. graminearum. Representative isolates of all species were pathogenic when inoculated onto seed tubers (‘Dark Red Norland’). Isolates of F. sambucinum were the most virulent. All 228 isolates of Fusarium were sensitive to difenoconazole (effective fungicide concentration that caused 50% inhibition of mycelial growth [EC50] < 5 mg/liter). Insensitivity to fludioxonil (EC50 > 100 mg/liter) was detected only for F. sambucinum and F. oxysporum isolates at 8.9 and 20.4%, respectively. All isolates were sensitive to thiabendazole (EC50 < 5 mg/liter), except for those of F. sambucinum (EC50 > 100 mg/liter). Therefore, knowledge of what Fusarium spp. are present in seed potato storage facilities in Michigan may be important if using fludioxonil or thiabendazole for seed piece treatment but not when using difenoconazole.


2015 ◽  
Vol 105 (9) ◽  
pp. 1183-1190 ◽  
Author(s):  
Mohammad Ali ◽  
Bosung Kim ◽  
Kevin D. Belfield ◽  
David Norman ◽  
Mary Brennan ◽  
...  

Application of nanoparticles for controlling plant pathogens is a rapidly emerging area in plant disease management, and nanoparticles synthesis methods that are economical and ecofriendly are extensively investigated. In this project, we investigated the potential of silver nanoparticles (AgNPs) synthesized with aqueous extract of Artemisia absinthium against several Phytophthora spp., which cause many economically important crop diseases. In in vitro dose-response tests conducted in microtiter plates, 10 µg ml−1 of AgNPs inhibited mycelial growth of P. parasitica, P. infestans, P. palmivora, P. cinnamomi, P. tropicalis, P. capsici, and P. katsurae. Detailed in vitro dose-response analyses conducted with P. parasitica and P. capsici revealed that AgNPs synthesized with A. absinthium extract were highly potent (IC50: 2.1 to 8.3 µg ml−1) and efficacious (100%) in inhibiting mycelial growth, zoospore germination, germ tube elongation, and zoospore production. Interestingly, AgNP treatment accelerated encystment of zoospores. Consistent with in vitro results, in planta experiments conducted in a greenhouse revealed that AgNP treatments prevented Phytophthora infection and improved plant survival. Moreover, AgNP in in planta experiments did not produce any adverse effects on plant growth. These investigations provide a simple and economical method for controlling Phytophthora with AgNP without affecting normal plant physiology.


2011 ◽  
Vol 71 (2) ◽  
pp. 126-130 ◽  
Author(s):  
Tarcieli P. Venturini ◽  
Luana Rossato ◽  
Tatiana B. Spader ◽  
Giordano R. Tronco-Alves ◽  
Maria Izabel Azevedo ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 75 ◽  
Author(s):  
Gul B. Poussio ◽  
Manzoor A. Abro ◽  
Jamal U. D. Hajano ◽  
Muhammad I. Khaskheli ◽  
Khalid I. Rajput ◽  
...  

Fusarium oxysporum f.sp. lycopersici (FOL) is a highly destructive fungal pathogen of tomato crop causing wilt disease which may reduce 10 to 90% yield. In Pakistan, tomato is widely grown in Sindh province, major territories are district Hyderabad, Tando Allahyar and Mirpurkhas. Thus, surveys of these territories were conducted to record intensity of the disease and confirm etiology. Furthermore, potential of different botanical pesticides and commercially available fungicides were tested to inhibit mycelial growth of the causal fungus. The experiment was laid down with complete randomized block design with three replications. The results showed that the disease was occurring in all locations with the range of 8-47 % incidence. F. oxysporum f.sp. lycopersici was predominantly isolated from the collected disease sample during survey and pathogenic nature of the fungus was tested on the tomato Golo variety through soil drenching method. The disease incidence of 30 and 42 % (72 % as total) was recorded in inoculated tomato plants at 20 and 40 DAI, respectively. Maximum (67 %) inhibition of the fungal growth was found by neem seed extracts at higher dose of 8 % concentration followed by 63 % with neem seeds and Eucalyptus at 6 and 8 %, respectively. Alternatively, the Nativo 75 WG fungicide was found most effective in reducing the redial mycelial growth of target fungus followed by Topsin-M at 1000 ppm where as Aliette and Melodedue fungicides were found least effective under in-vitro conditions.


Author(s):  
Viridiana López-Bautista ◽  
Gustavo Mora-Aguilera ◽  
María Alejandra Gutiérrez-Espinosa ◽  
Coral Mendoza-Ramos ◽  
Verónica Inés Martínez-Bustamante ◽  
...  

<p>La marchitez y pudrición seca del cogollo del agave (<em>Agave tequilana</em> var. azul) son enfermedades de alto impacto económico para este cultivo. En este trabajo se planteó determinar la implicación de <em>Fusarium</em> spp. en ambas enfermedades bajo un enfoque regional. Se colectaron muestras de raíz y suelo en 40 plantaciones comerciales ubicadas en 13 municipios de Los Altos Jalisco, importante región de cultivo de agave azul en México. De cada plantación de colecta se estimó carga de inóculo mediante un índice de <em>Fusarium</em> obtenido de unidades formadoras de colonias (<em>Fusarium</em> vs hongos totales) y se analizó su relación con pH y materia orgánica. Se obtuvieron 109 aislados caracterizados morfológicamente como <em>Fusarium</em> spp. de los cuales se seleccionaron 25 para identificación molecular con ITS y EF-1a. La selección consideró sintomatología, caracteres macro y microscópicos y prevalencia de tipologías de colonia observadas <em>in vitro</em> en medios Komada, Sabouraud, SNA y CLA. Los caracteres culturales y morfológicos evaluados fueron: coloración micelial, tamaño, forma y septación de macro y microconidios, y longitud y número de fiálides. Se asociaron cinco especies con marchitez y/o pudrición seca ubicadas en tres complejos filogenéticos: <em>F. oxysporum</em> del complejo de especies <em>Fusarium oxysporum</em> (FOSC) con 56% (46.2% suelo y 66.7% raíz) de representatividad regional; <em>F. solani, F. falciforme</em> y <em>Fusarium</em> sp. del complejo <em>Fusarium solani</em> (FSSC) (40%); y <em>Fusarium</em> sp. del complejo <em>Fusarium fujikuroi</em> (FFSC) (4%). MO y pH tuvieron correlación inversamente proporcional con Índice de <em>Fusarium</em> (<em>r2</em> = 0.68-0.70). Se postula que la marchitez y pudrición seca del cogollo de agave azul constituyen un síndrome en el cual se asocian y especializan parasíticamente diversas especies de <em>Fusarium</em>. Se encontró un aislado de los tres complejos de <em>Fusarium</em> asociados específicamente a cada tipo de síntoma y la combinación de ellos. La mayoría se asociaron a marchitez con predominancia de<em> F. oxysporum. </em>  </p><p> </p>


Author(s):  
Jaygendra Kumar ◽  
Mukesh Kumar ◽  
Akash Tomar ◽  
. Vaishali ◽  
Pushpendra Kumar ◽  
...  

Trichoderma species are well known for their biocontrol activity which colonize many soil and tuber-borne and foliage plant pathogens. In this study, 12 native isolates of Trichiderma spp were collected from various crop rhizosphere soil samples and characterized them phenotypically based on morphological and cultural features and genotypically based on sequence analysis of internal transcribed spacer (ITS) region-PCR amplification. The results obtained from phenotypic and genotypic observation revealed that isolates were belonged to five different species namely T. asperellum, T. harzianum, T. longibrachiatum, T. koningii and T. koningiopsis. All Trichoderma isolates produced ~600 bp amplicon and phylogenetic analysis revealed that all isolates were grouped with respective species. Further, the antagonistic potential of all the isolates was evaluated against Fusarium spp. following in vitro dual culture method. The results showed that isolates of T. harzianum exhibited maximum growth inhibition activity. The highest rate of inhibition was recorded with T. harzianum isolate TBT6 (87.1%) followed by TBT7 (82.2%), while the least inhibition was observed in T. longibrachiatum isolate TBT10 (59.7%) after 7 days of incubation. The antagonistic T. harzianum isolate TBT6 can be used for development of Trichoderma based bio-formulation and served as bio-control agent against Fusaium spp. under field conditions.


2021 ◽  
Vol 13 (4) ◽  
pp. 120
Author(s):  
Karla Danielle Nogueira Cardoso ◽  
Maria Josiane Martins ◽  
Thaisa Aparecida Neres de Souza ◽  
Isabelle Carolyne Cardoso ◽  
Patrícia Nirlane da Costa Souza ◽  
...  

Phomopsis sojae and Sclerotinia sclerotiorum are responsible for stem and pod dryness and white mold in soybean. These pathologies directly affect the quality of seeds/grains and compromise the entire plant. The use of extracts from different plants has been the subject of research for the control of several phytopathogens. Calotropis procera is among botanical species that synthesize efficient compounds for biocontrol. In this context, the aim of this study was to evaluate the in vitro effect of C. procera aqueous extract on P. sojae and S. sclerotiorum. The experiment was carried out in completely randomized blocks in a 2 &times; 5 factorial scheme (two fungi and five extract concentrations 0%, 5%, 10%, 15% and 20%) with 4 replicates. C. procera aqueous extract concentrations were added to Petri dishes containing PDA. After 48 hours, the mycelial growth rate was evaluated. After seven days of incubation, the fungal colony area, sporulation, and germination of P. sojae and S. sclerotiorum were evaluated. There was significant interaction between fungi &times; extract concentrations (p &lt; 0.05) for all variables analyzed. The mycelial growth rate of P. sojae was lower than that of S. sclerotiorum. The diameter of the P. sojae fungal colony was smaller than that of S. sclerotiorum when concentrations of 5%, 10% and 15% were used. As the extract concentration increased, fungi sporulation and germination reduced.


Sign in / Sign up

Export Citation Format

Share Document