scholarly journals In vitro antifungal potential of plant extracts against Fusarium oxysporum, Rhizoctonia solani and Macrophomina phaseolina.

2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.

2020 ◽  
Vol 11 (5) ◽  
pp. 1135-1147
Author(s):  
Talina Olivia Martínez-Martínez ◽  
Brenda Zulema Guerrero-Aguilar ◽  
Víctor Pecina-Quintero ◽  
Enrique González-Pérez ◽  
Juan Gabriel Angeles-Núñez

El garbanzo es una leguminosa, que se cultiva en dos regiones de México principalmente, noroeste (Sonora, Sinaloa y Baja california) y la región de El Bajío (Guanajuato, Michoacán y Jalisco); sin embargo, cada año la producción del cultivo está comprometida con la fusariosis vascular, una de las principales enfermedades que afectan al cultivo y que está asociada al complejo fúngico Fusarium oxysporum, Fusarium solani, Rhizoctonia solani, Macrophomina phaseolina y Sclerotium rolfsii. Una alternativa de control biológico es la aplicación de Trichoderma, la que además tiene un efecto indirecto en la nutrición de la planta. El objetivo de este estudio fue determinar el antagonismo in vitro de dos cepas de Trichoderma harzianum (T1 y T2) y su efecto como biofertilizante. Se realizaron confrontaciones in vitro contra cepas de las razas de Fusariumoxysporum f. sp. ciceris (Foc 0, 1B/C, 5 y 6), Fusarium solani, Macrophomina phaseolina (MSonora y M-GTO) y Sclerotium rolfsii. Se evaluó el efecto de T2 como biofertilizante (TB) midiendo las variables: número de flores, vainas, altura de la planta, diámetro del tallo, longitud de la raíz y rendimiento de grano. Las dos cepas de T. harzianum mostraron antagonismo en diferente escala contra los patógenos. Adicionalmente, con el tratamiento donde se aplicó T. harzianum (TB) se presentaron incrementos en el número de flores (30%), vainas (24%), altura (3%), diámetro de las plantas (3.5%), así como la longitud de la raíz (13%) y rendimiento del grano (23%).


2017 ◽  
Vol 14 (1) ◽  
pp. 59 ◽  
Author(s):  
Bruno Sérgio Vieira ◽  
Hyann Markos Pereira Vieira ◽  
Luciana Alves de Sousa ◽  
Karoline Damasceno Ribeiro de Mendonça

<p>Durante uma seleção de bactérias antagonistas realizada no Laboratório de Microbiologia e Fitopatologia da UFU, o isolado de <em>Bacillus subtilis</em>, BSV – 05 se destacou. Diante disso, objetivou-se no presente trabalho avaliar o potencial antagonístico <em>in vitro</em> deste isolado bacteriano contra quatro patógenos radiculares do feijoeiro: <em>Fusarium solani </em>f. sp. <em>phaseoli, Fusarium oxysporum</em> f. sp. <em>phaseoli, Macrophomina phaseolina </em>e <em>Rhizoctonia solani</em>. Foram utilizadas as seguintes metodologias <em>in vitro </em>versus os patógenos citados:<em> </em>cultivo pareado, influência da inoculação conjunta, produção de metabolitos voláteis e não voláteis. Os percentuais de inibição do isolado BSV – 05 sobre <em>M. phaseolina, R. solani, F. solani,</em> <em>F. oxysporum</em>, foram de 61,43%; 50,36%; 13,74% e 7,7%, respectivamente, para a metodologia do cultivo pareado. O contato direto da bactéria com os patógenos inibiu em 100% o crescimento micelial de <em>M. phaseolina, R. solani</em>; e para <em>F. solani </em>e <em>F. oxysporum</em>, foram observadas inibições de 90 e 92 %, respectivamente. Possíveis metabólitos secretados pelo isolado BSV 05 apresentaram níveis de inibição de 100% para <em>R. solani</em>. Para <em>M. phaseolina</em>, observou-se uma porcentagem de inibição de 80,26%, e 45,31% e 47,80% para <em>F. solani </em>e <em>F. oxysporum</em>, respectivamente. A porcentagem de inibição da germinação de conídios de <em>F. solani </em>e <em>F. oxysporum </em>e<em> M. phaseolina</em> num meio de cultura contendo substâncias metabolizadas por BSV – 05 foi de 87,70; 91,28% e 100%, respectivamente. O isolado bacteriano BSV-05 não apresentou produzir nenhum metabólito volátil.</p>


2011 ◽  
Vol 13 (2) ◽  
pp. 240-245 ◽  
Author(s):  
A.R.T Costa ◽  
M.F.Z.J Amaral ◽  
P.M Martins ◽  
J.A.M Paula ◽  
T.S Fiuza ◽  
...  

Atualmente o uso de métodos alternativos para o controle de doenças e pragas na agricultura, visando minimizar os danos ao meio ambiente e à saúde pública é uma prática reconhecida e necessária. Este trabalho objetivou investigar a ação do óleo essencial de Syzygium aromaticum (L.) Merr. & L.M.Perry sobre o crescimento micelial in vitro dos fungos fitopatogênicos Rhizoctonia solani, Fusarium solani, Fusarium oxysporum e Macrophomina phaseolina. A análise por cromatografia gasosa acoplada com espectrometria de massa possibilitou a identificação de eugenol (83,6%), acetato de eugenila (11,6%) e cariofileno (4,2%). A avaliação microscópica dos micélios dos fungos evidenciou diversas alterações morfológicas, como a presença de vacúolos, desorganização dos conteúdos celulares, diminuição na nitidez da parede celular, intensa fragmentação e menor turgência das hifas. O óleo essencial de cravo apresentou atividade fungicida na concentração de 0,15% sobre o crescimento de R. solani, F. oxysporum e F. solani, entretanto não demonstrou essa atividade sobre M. phaseolina. Esses resultados indicam perspectivas favoráveis para posterior uso do óleo de cravo no controle desses fitopatógenos na agricultura.


2019 ◽  
Vol 31 (1) ◽  
pp. 75-80
Author(s):  
Muhammad M Rasheed ◽  
Amer Habib ◽  
Mustansar Aslam ◽  
Zeeshan Mansha ◽  
Abdul Rehman ◽  
...  

Aloe vera is a valuable medicinal crop of the world. It suffers from several diseases but among them alternaria leaf spot and dry rot is most serious fungal disease which effects the commercial production and quality losses to Aloe vera. A survey was conducted to estimate the prevalence of dry rot disease in different nurseries located in urban areas of Faisalabad. During this survey maximum disease incidence was recorded in Horti club nursery (100%) and minimum disease incidence recorded at Faiz baho nursery and Qadir baksh form (13.8%). Among in-vitro tested fungicides Score gives maximum mycelial growth inhibition (89.5%) and maximum disease control (17.7%) as compared to control and other tested chemicals. Among in-vitro tested plant extracts Neem gives maximum mycelial growth inhabitation (41.2%) and in green house gives 14.2% disease control. Out of four tested fungicides and plant extracts Score and Neem gives best results against A. alternata mycelial growth and disease control.


2012 ◽  
Vol 48 (No. 2) ◽  
pp. 74-79 ◽  
Author(s):  
S.M.A. Nashwa ◽  
K.A.M. Abo-Elyousr

The antimicrobial activity of six plant extracts from Ocimum basilicum (Sweat Basil), Azadirachta indica (Neem), Eucalyptus chamadulonsis (Eucalyptus), Datura stramonium (Jimsonweed), Nerium oleander (Oleander), and Allium sativum (Garlic) was tested for controlling Alternaria solani in vitro and in vivo. In in vitro study the leaf extracts of D. stramonium, A. indica, and A. sativum at 5% concentration caused the highest reduction of mycelial growth of A. solani (44.4, 43.3 and 42.2%, respectively), while O. basilicum at 1% and 5% concentration and N. oleander at 5% concentration caused the lowest inhibition of mycelial growth of the pathogen. In greenhouse experiments the highest reduction of disease severity was achieved by the extracts of A. sativum at 5% concentration and D. stramonium at 1% and 5% concentration. The greatest reduction of disease severity was achieved by A. sativum at 5% concentration and the smallest reduction was obtained when tomato plants were treated with O. basilicum at 1% and 5% concentration (46.1 and 45.2 %, respectively). D. stramonium and A. sativum at 5% concentration increased the fruit yield by 76.2% and 66.7% compared to the infected control. All treatments with plant extracts significantly reduced the early blight disease as well as increased the yield of tomato compared to the infected control under field conditions.


2020 ◽  
Vol 5 (3) ◽  
pp. 27
Author(s):  
Muhammad Wajid ◽  
Adil Mahmood ◽  
Haseeb Anwar ◽  
Muhammad Imran Hamid ◽  
Yannong Xiao ◽  
...  

There is a vast variety of microbes available in soil performing diverse functions for plants including root colonization for protection against pathogens and nutrient acquisition. In the present study, efficacy of rhizospheric microbial strains and plant extracts were evaluated against citrus nematode for their nematicidal activity. Three different concentrations of plant extracts were evaluated in vitro, results depicts that 10% solution of Tagetes erecta (root) has given 46% the highest percentage mortality at 48hrs followed by Tagetes erecta (leaf) and Datura stramonium killed 41% and 37% nematodes respectively, similarly for 20% of plant extract in distilled water, the highest mortality rate was recorded for T. erecta (root) 68% followed by D. stramonium 47% and Acacia nilotica 44% at 48hrs of application. While using a higher concentration 30% of SS. the percentage mortality elevated multifold i.e.  Marigold root has killed maximum 76% nematodes followed by Marigold leaves and Dhatura with mortality rate 69% and 58% respectively at 48 hrs of interval. While Eucalyptus killed lowest no of nematodes. Additionally, five bacterial isolates were evaluated for their nematicidal activity. Results indicated that for bacterial cell suspension, Pseudomonas putida has shown maximum mortality rate at 84% followed by Bacillus subtilis 73% & Pseudomonas geniculata 65% at 48hrs of interval. Similarly, in the 2nd set of experiment bacterial culture filtrates has exhibited promising results, maximum mortality rate was recorded for Bacillus spp. 81% followed by B. subtilis 76%, Ps putida 63%, after 48hrs of incubation. Moreover, an insight investigation of bacterial extracellular metabolites and plant extracts would enable researchers to develop purposeful products and compositions


2020 ◽  
Author(s):  
Irish Mae Bauzon-Cantila ◽  
Jaime C. Silvestre ◽  
Raquel B. Evangelista ◽  
Edralyn Catubay

ABSTRACTRhizoctonia solani Kuhn, the causal pathogen of sheath blight is second most damaging fungal disease in rice. While using chemical fungicides present high detriment to environment, the study investigate the efficacy of treatments composing five biofungicides in three different rates along with a biological agent, chemical check and untreated against the pathogen in in vitro level. In vitro efficacy showed that Melaleuca alternifolia + terpenes at 3.00 ml/L of H20 (T6), Aloe vera powder (Manopol) + Melaleuca oil at 3.00 ml/L of H20 (T15) and at 2.00 ml/L of H20 (T14) and Melaleuca alternifolia + terpenes at 2.00 ml/L of H20 (T5) as very effective (0-10 mm diameter zone of growth) treatments comparable to the chemical check (T17). Therefore, attaining high yield rice while having low risk to environment can always be done.


2010 ◽  
Vol 50 (1) ◽  
pp. 93-97 ◽  
Author(s):  

Effect of Fungal Metabolites and Amendments on Mycelial Growth ofRhizoctonia SolaniA shift towards organic farming suggests amalgamation of organic resources against soil borne plant pathogens. The influence of metabolites of most ubiquitousAspergillusspp., organic amendment extracts and their combined effect withTrichoderma virenswere evaluatedin vitroagainstRhizoctonia solani.The minimum (36.1 mm) growth was attained byR. solaniin co-culture withA. niger.The maximum (42.3 mm) inhibition of mycelial growth of the test organism was observed with culture filtrate ofA. ochraceousfollowed byA. niger, A. fumigatus, A. flavusandA. terreus.Among organic amendment extractants, castor cake exhibited an additive effect on the growth ofT. virens, however, the maximum (41.8 mm) suppressive effect onR. solaniwas observed with vermicompost. With the advance in time, the effect of organic amendment extracts increased markedly. Inhibition potential of culture filtrate mixturte ofA. niger+T. virensandA. ochraceous+T. virensagainstR. solaniwas significantly higher in comparison to the other combinations.


2013 ◽  
Vol 43 (4) ◽  
pp. 460-466 ◽  
Author(s):  
Rosane Fátima Baldiga Tonin ◽  
Aveline Avozani ◽  
Anderson Luiz Durante Danelli ◽  
Erlei Melo Reis ◽  
Sandra Maria Zoldan ◽  
...  

Black root rot, caused by Macrophomina phaseolina (Tass.) Goid., is the most common root disease in soybean fields. This study aimed to determine the in vitro mycelial sensitivity, measured by the IC50 (concentration to inhibit 50% of the fungus mycelial growth) of a M. phaseolina isolate obtained from soybean, to different fungicides (thiram, iprodione, carbendazim, pyraclostrobin, fluquinconazol, tolyfluanid, metalaxyl and penflufen + trifloxystrobin), at six concentrations (0.01 mg L-1, 0.10 mg L-1, 1.00 mg L-1, 10.00 mg L-1, 20.00 mg L-1 and 40.00 mg L-1 of the active ingredient). The 0.00 mg L-1 concentration represented the control, without fungicide addition. The mycelial growth evaluation was performed with the aid of a digital pachymeter, by measuring the colonies diameter, when the fungus growth in the control treatment reached the Petri dish edge. The experimental design was completely randomized, with four replications. Concerning the fungitoxicity of active ingredients, a variation from non-toxic to highly fungitoxic was observed to the M. phaseolina isolate, with IC50 values ranging from 0.23 mg L-1 to > 40.00 mg L-1, being carbendazim the most efficient one (IC50 = 0.23 mg L-1). The fungus showed insensitivity to the active ingredients of fluquinconazole, metalaxyl, thiram and tolyfluanid.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 45
Author(s):  
Andrea Angarita-Rodríguez ◽  
Diego Quiroga ◽  
Ericsson Coy-Barrera

There is a continuous search for more reliable and effective alternatives to control phytopathogens through different strategies. In this context, indole-containing phytoalexins are stimuli-induced compounds implicated in plant defense against plant pathogens. However, phytoalexins’ efficacy have been limited by fungal detoxifying mechanisms, thus, the research on bioisosteres-based analogs can be a friendly alternative regarding the control of Fusarium phytopathogens, but there are currently few studies on it. Thus, as part of our research on antifungal agents, a set of 21 synthetic indole-containing phytoalexin analogs were evaluated as inhibitors against the phyopathogen Fusarium oxysporum. Results indicated that analogs of the N,N-dialkylthiourea, N,S-dialkyldithiocarbamate and substituted-1,3-thiazolidin-5-one groups exhibited the best docking scores and interaction profiles within the active site of Fusarium spp. enzymes. Vina scores exhibited correlation with experimental mycelial growth inhibition using supervised statistics, and this antifungal dataset correlated with molecular interaction fields after CoMFA. Compound 24 (tert-butyl (((3-oxo-1,3-diphenylpropyl)thio)carbonothioyl)-l-tryptophanate), a very active analog against F. oxysporum, exhibited the best interaction with lanosterol 14α-demethylase according to molecular docking, molecular dynamics and molecular mechanic/poisson-boltzmann surface area (MM/PBSA) binding energy performance. After data analyses, information on mycelial growth inhibitors, structural requirements and putative enzyme targets may be used in further antifungal development based on phytoalexin analogs for controlling phytopathogens.


Sign in / Sign up

Export Citation Format

Share Document