scholarly journals 2D numeric simulation of serrated-chip formation in orthogonal cutting of AISI316H stainless steel

2017 ◽  
Vol 51 (6) ◽  
pp. 953-956 ◽  
Author(s):  
A. Gök
2012 ◽  
Vol 500 ◽  
pp. 152-156
Author(s):  
Zeng Hui Jiang ◽  
Ji Lu Feng ◽  
Xiao Ye Deng

A finite element model of a two dimensional orthogonal cutting process is developed. The simulation uses standard finite software is able to solve complex thermo-mechanical problems. A thermo-visco-plastic model for the machined material and a rigid cutting tool were assumed. One of the main characteristic of titanium alloy is serrated shape for a wide range of cutting conditions. In order to understand the influence of cutting parameters on the chip formation when machining titanium alloy Ti-6Al-4V. The influence of the cutting speed,the cutting depth and the feed on the chip shape giving rise to segmented chips by strain localisation is respectively discussed.


2015 ◽  
Vol 665 ◽  
pp. 17-20 ◽  
Author(s):  
Apostolos Korlos ◽  
Orestis Friderikos ◽  
Dimitrios Sagris ◽  
Constantine David ◽  
Gabriel Mansour

The chip formation mechanism in orthogonal cutting is a phenomenon that attracts the attention of many researchers. This paper investigates experimentally the orthogonal cutting of Ti6Al4V at different cutting conditions aiming at the understanding of the chip formation mechanism. Serrated chip formation is obtained during orthogonal cutting of Ti6Al4V in a wide range of cutting speeds. The results are analyzed in order to extract useful indices relevant to chip geometry, as the adiabatic zone angle and other dimensions that describe the serrated chip. The cutting forces and the acoustic emission are measured. Finally, by the aid of 3D Computed Tomography (CT) the chip morphology is analyzed to better understand the segmentation process.


2011 ◽  
Vol 264-265 ◽  
pp. 1021-1026
Author(s):  
U. Umer ◽  
Li Jing Xie ◽  
Syed Jawid Askari ◽  
S.N. Danish ◽  
S.I. Butt

The finite element method (FEM) has been used to model high speed turning processes with orthogonal cutting conditions. In most of the situations, continuous chip formation is used to analyze the turning process due to its stability and allowing many conditions to simplify the process. However with the increasing applications of high speed turning, serrated chip formation is becoming a more common phenomenon in metal cutting. Serrated chips usually occur in machining of difficult to cut materials at or above a threshold speed. An updated Lagrangian formulation has been used in this study which works with element deletion technique based on a failure criterion. The Johnson Cook strain-hardening thermal-softening material model is used to model serrated chip formation. In addition high speed turning experiments were conducted on AISI H13 tubes using PCBN to analyze serrated chip phenomenon. The chips were analyzed after surface treatment using scanning electron microscope. It has been found that the length of cuts in the chip increases with the cutting speed and the chip changes from serrated to discontinuous. Different process variables like cutting forces, chip morphology, stress, strain and temperature distributions are predicted at different process parameters using FEM. The results show cyclic variation in the cutting forces at high cutting speeds due to varying chip load.


Sign in / Sign up

Export Citation Format

Share Document