Serrated chip formation mechanism analysis using a modified model based on the material defect theory in machining Ti-6Al-4 V alloy

2018 ◽  
Vol 96 (9-12) ◽  
pp. 3575-3584 ◽  
Author(s):  
Jiangtao Che ◽  
Tianfeng Zhou ◽  
Zhiqiang Liang ◽  
Junjie Wu ◽  
Xibin Wang
2015 ◽  
Vol 665 ◽  
pp. 17-20 ◽  
Author(s):  
Apostolos Korlos ◽  
Orestis Friderikos ◽  
Dimitrios Sagris ◽  
Constantine David ◽  
Gabriel Mansour

The chip formation mechanism in orthogonal cutting is a phenomenon that attracts the attention of many researchers. This paper investigates experimentally the orthogonal cutting of Ti6Al4V at different cutting conditions aiming at the understanding of the chip formation mechanism. Serrated chip formation is obtained during orthogonal cutting of Ti6Al4V in a wide range of cutting speeds. The results are analyzed in order to extract useful indices relevant to chip geometry, as the adiabatic zone angle and other dimensions that describe the serrated chip. The cutting forces and the acoustic emission are measured. Finally, by the aid of 3D Computed Tomography (CT) the chip morphology is analyzed to better understand the segmentation process.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Zhongpeng Zheng ◽  
Chenbing Ni ◽  
Yun Yang ◽  
Yuchao Bai ◽  
Xin Jin

Previous studies have reported significant differences in the Johnson-Cook (J-C) parameters of Ti6Al4V alloy. Thus, various serrated chip morphologies, cutting forces, and cutting temperatures are obtained when different constitutive parameters are used for numerical and simulation analyses, which decreases the reliability of the simulation model. Therefore, it is necessary to investigate and analyze simulation errors due to differences in the J-C parameters. In this study, the mechanism of the serrated chip formation of Ti6Al4V is thoroughly analyzed using the uniformly proportional J-C parameters. The serrated chip sensitivity, shear band spacing, serrated segmentation frequency, chip serration intensity, temperature field, strain energy, and cutting force is obtained. This study aims to improve the accuracy and reliability of the micro-cutting simulation models, as well as a reference for the selection of J-C constitutive parameters of simulation with Ti6Al4V manufactured with different heat treatments and additive manufacturing.


2011 ◽  
Vol 312-315 ◽  
pp. 983-988
Author(s):  
Seyed Vahid Hosseini ◽  
Mehrdad Vahdati ◽  
Ali Shokuhfar

Nowadays, the nano-machining process is used to produce high quality finished surfaces with precise form accuracy. To understand and analyze the chip formation mechanism of nano-machining process on an atomistic scale, since the experimentation is not an easy task, numerical simulation such as molecular dynamic (MD) simulation is a very useful method. In this paper, MD simulation of the nano-metric cutting of single-crystal copper was performed with a single crystal diamond tool. The model was solved with both pair wise Morse potential function and embedded atom method (EAM) potential to simulate the inter-atomic force between the work-piece and a rigid tool. The chip formation mechanism, dislocation generation, tool forces and generated temperature were investigated. Results show that the Morse potential cannot perform an appropriate defect formation and plastic deformation in nano-metric cutting of metals. Also, tool forces in Morse potential are more than the forces in EAM potential. Furthermore, the fluctuations of resultant forces in Morse potential are greater than that of EAM. In addition, using many-body interaction potentials like EAM can lead to substantial changes in surface energies, elastic-plastic properties and atomic displacement, compared with the pair-wise potentials like Morse. Finally, the atomic displacement investigation shows that in EAM potential study, only the atoms in a local region near the cutting process are displaced, but in Morse potential a large portion of atoms has affected during cutting process. Subsequently, the chip temperature in EAM potential is more than that of Morse potential.


Sign in / Sign up

Export Citation Format

Share Document