scholarly journals ELECTRIC PULSE HEATING OF REACTIVE COMPOSITIONS BY THIN-WALLED CONDUCTORS-HEATERS IN THE MODES OF MULTI-POINT IGNITION OF PROPELLANT CHARGES

Author(s):  
Sergey I. VOLODCHENKOV ◽  
◽  
Anatoliy A. GLAZUNOV ◽  
Sergey V. SINYAEV ◽  
◽  
...  

The problem of electric pulse heating of a medium by the heater made of metal foil with an ideal thermal contact with the medium is solved. The solution is obtained in the form of rapidly converging series for ohmic heating power, which is given as an arbitrary function of time. Using the obtained solution, a dimensionless criterion is introduced for quasi-homogeneous heating of the heater up to a melting point with intensive heat transfer to environment. It is shown that with a fixed heating duration, the criterion value depends weakly on the type of a heating power function, which allows ignoring parameters of the external electrical circuit of the device while choosing the heater thickness. The definition of a "thin" heater is introduced, which admits of bulk droplet destruction during heating of a reactive medium. In the "thin" heater approximation, quadrature solutions to the thermal problem are obtained under heat exchange according to Newton's law and ideal thermal contact, when the heater power is an arbitrary function of time. Dimensionless similarity parameters of the simulated processes are identified in all solutions, which include thermal and physical characteristics of the heater and medium, as well as the thickness of the heater and the time of its heating up to the melting point. The applicability of the "thin" heater model for calculating the thermal state of a high-energy pyrotechnic coating is shown. As an example, the permissible values of the thickness of the magnesium foil heater are determined, which ensure its uniform heating up to the melting point in 1 and 5 milliseconds under the ideal thermal contact with ignited coating. The obtained quadrature solutions to the thermal problems and the calculated results are applicable in the design of compact electric pulse devices for contact multi-point ignition of various reactive compositions with efficient consumption of electric energy.

2021 ◽  
Vol 92 (7) ◽  
pp. 074703
Author(s):  
T. Kaaden ◽  
V. Tympel ◽  
M. Kober ◽  
F. Schmidl ◽  
M. Rettenmayr ◽  
...  

1993 ◽  
Vol 65 (4) ◽  
pp. 963-966
Author(s):  
S. A. Balankin ◽  
V. S. Sokolov ◽  
A. O. Troitskii ◽  
D. M. Mishchenko

2019 ◽  
Vol 488 (5) ◽  
pp. 504-507
Author(s):  
A. S. Rogachev ◽  
S. G. Vadchenko ◽  
V. A. Kudryashov ◽  
A. S. Shchukin ◽  
M. I. Alymov

Direct high-speed micro-video records prove the existence of highly overheated zones at the contacts of powder particles during short (~ 1 ms) electric current pulses. The value of overheating can exceed 1600 degrees and lead to the formation of liquid-phase sintering necks, the dimensions of which are well correlated with the size of the overheated zones. The micro-uniformity of the temperature field in the electric pulse heating allow understanding the unusually high consolidation rates of powder materials observed in spark plasma sintering.


Author(s):  
Olga Panteleivna Demyanchenko ◽  
Viktor Lyashenko

A condition of heat exchange between the layershaving different thermalphysic properties in a two-layercylindrical roll of a rolling mill is analyzed foe an ideal thermalcontact. It can be realized with application of the condition ofheat balance of one of the layers in the cylindrical area for ahomogeneous equation of heat conductivity. Analyzed was asimplified target setting in the radial section with a supposition,regarding an averaged in radius temperature distribution in theouter layer. By applying the condition of the thermal balance andby integrating the homogeneous equation of heat conductivity inthe two-layer area a condition of cohesion of an impedance typein case of an ideal thermal contact between the layers wasconstructed.


1984 ◽  
Vol 35 ◽  
Author(s):  
J.Z. Tischler ◽  
B.C. Larson ◽  
D.M. Mills

ABSTRACTSynchrotron x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) have been used to carry out nanosecond resolution measurements of the temperature distrubutions in Ge during UV pulsed-laser irradiation. KrF (249 nm) laser pulses of 25 ns FWHM with an energy density of 0.6 J/cm2 were used. The temperatures were determined from x-ray Bragg profile measurements of thermal expansion induced strain on <111> oriented Ge. The data indicate the presence of a liquid-solid interface near the melting point, and large (1500-4500°C/pm) temperature gradients in the solid; these Ge results are analagous to previous ones for Si. The measured temperature distributions are compared with those obtained from heat flow calculations, and the overheating and undercooling of the interface relative to the equilibrium melting point are discussed.


2018 ◽  
Vol 932 ◽  
pp. 57-61
Author(s):  
Wei Sun ◽  
Rong Xin Yan ◽  
Li Chen Sun ◽  
Zheng Li ◽  
Guan Qing Lang ◽  
...  

It is great significance to study self-healing aluminum alloy materials for spacecraft the structure protection from high energy space weapon attack and debris impact in future. In this paper, Using aluminum alloy (6063) as matrix material with low melting point alloy (Sn60Pb40, the melting point of 183°C) as repairing materials, the self-healing Aluminum Alloy material was designed and manufactured by the smelting and casting method. The crack damage repair performance of the self-healing Al alloy was researched through the experiment. The results show that the self-healing aluminum alloy has certain self-healing ability without help, when the temperature reaches the melting point temperature of Sn60Pb40. The repair time is about 20min, the crack filling rate can reach 84%. The research conclusion can provide a reference for the development of metal self-healing material technology.


Sign in / Sign up

Export Citation Format

Share Document