Methodology for the Development and Inclusion of Crash Modification Factors in the First Edition of the Highway Safety Manual

2010 ◽  
Author(s):  
◽  
◽  
Author(s):  
Lingtao Wu ◽  
Dominique Lord ◽  
Srinivas Reddy Geedipally

Horizontal curves have been identified as experiencing more crashes than tangent sections on roadways, especially on rural two-lane highways. The first edition of the Highway Safety Manual provides crash modification functions (CM functions) for curves on rural two-lane highways. The CM functions proposed in the manual may suffer from both outdated data and analysis technique. Before-and-after studies are usually the preferred method for estimating the safety effects of treatments. Unfortunately, this method is not feasible for curves. Previous studies have frequently used regression models for developing CM functions for horizontal curves. As recently documented in the literature, some potential problems exist with using regression models to develop crash modification factors. This research utilized a cross-sectional study to develop curvature CM functions. Curves located on Texas rural two-lane undivided highways were divided into a number of bins based on the curve radius. Safety was predicted with the assumption that these curves had been tangents. The observed number of crashes that occurred on the curves was compared with the dummy tangents and for different bins. The results showed that the horizontal curve radius has a significant role in the risk of a crash. From these results, a new CM function was developed. The prediction performance of the Highway Safety Manual CM function was compared with the new CM function in this study and another function that was recently proposed in the literature. It was found that the new CM function documented in this study outperformed both.


Author(s):  
Shaw-Pin Miaou

Crash-prediction models in the current edition of the Highway Safety Manual (HSM) have been developed to predict crash frequency by collision type and severity level for specific types of roadways and sites. Each model is made up of three major components: safety performance functions (SPFs), crash modification factors, and calibration factors. The objective of this study was to identify the limitations of the prediction models in estimating single-vehicle, run-off-road (SVROR) crashes for roadside safety analyses and suggest needed changes and developments. The paper presents a review of the state of the models in HSM and focuses on SPFs. Data from FHWA's safety effects of cross-section design for two-lane roads database were used to gain insight about the characteristics of SVROR crashes and total crashes, and to identify the limitations of the current models in predicting the frequency, type, and severity of SVROR crashes. Three major areas of limitations of SPFs are discussed: (a) assumptions involved in development, (b) variables that are potentially important to roadside design but not considered, and (c) statistical bias and uncertainty of the model equations.


Author(s):  
Darren J. Torbic ◽  
Daniel Cook ◽  
Joseph Grotheer ◽  
Richard Porter ◽  
Jeffrey Gooch ◽  
...  

The objective of this research was to develop new intersection crash prediction models for consideration in the second edition of the Highway Safety Manual (HSM), consistent with existing methods in HSM Part C and comprehensive in their ability to address a wide range of intersection configurations and traffic control types in rural and urban areas. The focus of the research was on developing safety performance functions (SPFs) for intersection configurations and traffic control types not currently addressed in HSM Part C. SPFs were developed for the following general intersection configurations and traffic control types: rural and urban all-way stop-controlled intersections; rural three-leg intersections with signal control; intersections on high-speed urban and suburban arterials (i.e., arterials with speed limits greater than or equal to 50 mph); urban five-leg intersections with signal control; three-leg intersections where the through movements make turning maneuvers at the intersections; crossroad ramp terminals at single-point diamond interchanges; and crossroad ramp terminals at tight diamond interchanges. Development of severity distribution functions (SDFs) for use in combination with SPFs to estimate crash severity as a function of geometric design elements and traffic control features was explored; but owing to challenges and inconsistencies in developing and interpreting the SDFs, it was recommended for the second edition of the HSM that crash severity for the new intersection configurations and traffic control types be addressed in a manner consistent with existing methods in Chapters 10, 11, and 12 of the first edition, without use of SDFs.


2019 ◽  
Vol 31 (2) ◽  
pp. 163-172
Author(s):  
Maen Qaseem Ghadi ◽  
Árpád Török

In road safety, the process of organizing road infrastructurenetwork data into homogenous entities is called segmentation.Segmenting a road network is considered thefirst and most important step in developing a safety performancefunction (SPF). This article aims to study the benefitof a newly developed network segmentation method which is based on the generation of accident groups applying K-means clustering approach. K-means algorithm has been used to identify the structure of homogeneous accident groups. According to the main assumption of the proposed clustering method, the risk of accidents is strongly influenced by the spatial interdependence and traffic attributes of the accidents. The performance of K-means clustering was compared with four other segmentation methods applying constant average annual daily traffic segments, constant length segments, related curvature characteristics and a multivariable method suggested by the Highway Safety Manual (HSM). The SPF was used to evaluate the performance of the five segmentation methods in predicting accident frequency. K-means clustering-based segmentation method has been proved to be more flexible and accurate than the other models in identifying homogeneous infrastructure segments with similar safety characteristics.


2012 ◽  
Vol 53 ◽  
pp. 910-919 ◽  
Author(s):  
Salvatore Cafiso ◽  
Giacomo Di Silvestro ◽  
Giovanni Di Guardo

Sign in / Sign up

Export Citation Format

Share Document