scholarly journals Obtaining reducing sugars by acid hydrolysis from a consortium of amazon microalgae cultivated in wastewater

2021 ◽  
Vol 17 (4) ◽  
pp. 45-51
Author(s):  
Jorge Antonio Suárez Rumiche ◽  
Ancelmo Castillo Valdiviezo ◽  
Rosa Isabel Souza Najar
1975 ◽  
Vol 53 (14) ◽  
pp. 2182-2188 ◽  
Author(s):  
Gerald O. Aspinall ◽  
Thinnayam N. Krishnamurthy ◽  
Walter Mitura ◽  
Masuo Funabashi

Two methylated disaccharides, methyl [methyl 4-O-(2,3,4,6-tetra-O-methyl-α-D-glucopyranosyl)-2,3-di-O-methyl-β-D-glucopyranosid]uronate (9) and methyl 6-O-(methyl 2,3,4-tri-O-methyl-α-D-galactopyranosyluronate)-2,3,4-tri-O-methyl-β-D-glucopyranoside (15) have been synthesized and used as model compounds for the study of the base-catalyzed β-elimination of 4-O-substituted hexopyranosiduronates without degradation of exposed reducing sugars and of the selective acid hydrolysis of hex-4-enopyranosiduronates.


Cellulose ◽  
2016 ◽  
Vol 23 (3) ◽  
pp. 1491-1520 ◽  
Author(s):  
Yu-Loong Loow ◽  
Ta Yeong Wu ◽  
Jamaliah Md. Jahim ◽  
Abdul Wahab Mohammad ◽  
Wen Hui Teoh

2014 ◽  
Vol 27 (1) ◽  
pp. 60-71 ◽  
Author(s):  
In Yang ◽  
Byoung Jun Ahn ◽  
Myeong-Yong Kim ◽  
Sei Chang Oh ◽  
Sye Hee Ahn ◽  
...  

2021 ◽  
Author(s):  
Mariane Daniella Silva ◽  
João Pedro Cano ◽  
Fernanda Maria Pagane Guereschi Ernandes ◽  
Crispin Humberto Garcia-Cruz

Abstract Brazil is one of the countries with the largest agricultural production in the world. Therefore, it is capable of generating large amounts of agro-industrial waste that can be used as biomass for the production of biofuels. Second generation ethanol is a renewable energy alternative, capable of replacing fossil fuels. Within this context, the objective of the present work was to study the effect of diluted acid hydrolysis in different types of lignocellulosic residues and the consequent production of 2G ethanol from these hydrolysates using different fermenting microorganisms. The acid concentration that released the highest content of fermentable sugars from the acid hydrolysis of lignocellulosic materials was 5.0% of sulfuric acid and the contact time with the biomass was 15 min. while heating in autoclave. The material that showed the highest sugar release after acid hydrolysis was cassava residues, with 131.09 g.L− 1 of reducing sugars. The fermentations were carried out with microorganisms alone and also in consortium. The largest production of 2G ethanol was from the hydrolyzate of soybean hulls, of 47.70 g.L− 1 of ethanol by the consortium of Zymomonasmobilis and Candida tropicalis, during 8 h of fermentation and showed productivity of 5.96 g.L− 1.h− 1.


Author(s):  
Ebrahim Eskandari Nasab ◽  
Mehran Habibi-Rezaei ◽  
Afshin Khaki ◽  
Mohammad Balvardi

In this study, the acid hydrolysis of inulin was investigated as a function of three variables: pH, temperature and time. Inulin hydrolysis was detected by measurement of reducing sugars, using Dinitro Salicylic acid (DNS) method. The central composite rotatable design (CCRD) was applied to design an experimental program to model the effects of acidic and alkaline pH on the inulin hydrolysis. Additionally, response surface methodology (RSM) was utilized for data analysis. The statistical analysis of the results confirmed that pH, temperature and time are significant variables at acidic pH, whereas at alkaline pH, these variables are insignificant. The maximum amount of inulin hydrolysis obtained at the pH < 2, temperature > 90°C and the time of 1 hrs.


2021 ◽  
Author(s):  
Nashwa Fetyan ◽  
Abo El-Khair B. El-Sayed ◽  
Fatma M. Ibrahim ◽  
Yasser Attia ◽  
Mahmoud W. Sadik

Abstract Microalgal biomass is one of the most promising third-generation feedstocks for bioethanol production because it contains significantly reduced sugar amounts which, by separate hydrolysis and fermentation, can be used as a source for ethanol production. In this study, the defatted microalgal biomass of Nannochloropsis oculata (NNO-1 UTEX Culture LB 2164) was subjected to bioethanol production through acid digestion and enzymatic treatment before being fermented by Saccharomyces cerevisiae (NRRLY-2034). For acid hydrolysis (AH), the highest carbohydrate yield 252.84 mg/g DW was obtained with 5.0% (v/v) H2SO4 at 121°C for 15 min for defatted biomass cultivated mixotrophically on SBAE with respect to 207.41 mg/g DW for defatted biomass cultivated autotrophically (control treatment), Whereas, the highest levels of reducing sugars was obtained With 4.0%(v/v) H2SO4 157.47 ± 1.60 mg/g DW for defatted biomass cultivated mixotrophically in compared with 135.30 mg/g DW for the defatted control treatment. The combination of acid hydrolysis 2.0% (v/v) H2SO4 followed by enzymatic treatment (AEH) increased the carbohydrate yields to 268.53 mg/g DW for defatted biomass cultivated mixotrophically on SBAE with respect to 177.73 mg/g DW for the defatted control treatment. However, the highest levels of reducing sugars were obtained with 3.0% (v/v) H2SO4 followed by enzyme treatment gave 232.39 ± 1.77 for defatted biomass cultivated mixotrophically on SBAE and 150.75 mg/g DW for the defatted control treatment. The sugar composition of the polysaccharides showed that glucose was the principal polysaccharide sugar (60.7%-62.49%) of N. oculata defatted biomass. Fermentation of the hydrolysates by Saccharomyces cerevisiae for the acid pretreated defatted biomass samples gave ethanol yield of 0.86 g/l (0.062 g/g sugar consumed) for control and 1.17 g/l (0.069 g/g sugar consumed) for SBAE mixotrophic. Whereas, the maximum ethanol yield of 6.17 ± 0.47 g/l (0.26 ± 0.11 g/g sugar consumed) was obtained with samples from defatted biomass grown mixotrophically (SBAE mixotrophic) pretreated with acid coupled enzyme hydrolysis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11244
Author(s):  
Fatthy Mohamed Morsy ◽  
Medhat Elbadry ◽  
Yasser Elbahloul

Cellulosic biowastes are one of the cheapest and most abundant renewable organic materials on earth that can be, subsequent to hydrolysis, utilized as an organic carbon source for several fermentation biotechnologies. This study was devoted to explore a semidry acid hydrolysis of cellulose for decreasing the cost and ionic strength of the hydrolysate. For semidry acid hydrolysis, cellulose was just wetted with HCl (0 to 7 M) and subjected to autoclaving. The optimum molar concentration of HCl and period of autoclaving for semidry acid hydrolysis of cellulose were 6 M and 50 min respectively. Subsequent to the semidry acid hydrolysis with a minimum volume of 6 M HCl sustained by autoclaving, the hydrolysate was diluted with distilled water and neutralized with NaOH (0.5 M). The reducing sugars produced from the semidry acid hydrolysis of cellulose was further used for dark fermentation biohydrogen production by Escherichia coli as a representative of most hydrogen producing eubacteria which cannot utilize non-hydrolyzed cellulose. An isolated E. coli TFYM was used where this bacterium was morphologically and biochemically characterized and further identified by phylogenetic 16S rRNA encoding gene sequence analysis. The reducing sugars produced by semidry acid hydrolysis could be efficiently utilized by E. coli producing 0.4 mol H2 mol−1 hexose with a maximum rate of hydrogen gas production of 23.3 ml H2 h−1 L−1 and an estimated hydrogen yield of 20.5 (L H2 kg−1 dry biomass). The cheap cellulosic biowastes of wheat bran, sawdust and sugarcane bagasse could be hydrolyzed by semidry acid hydrolysis where the estimated hydrogen yield per kg of its dry biomass were 36, 18 and 32 (L H2 kg−1 dry biomass) respectively indicating a good feasibility of hydrogen production from reducing sugars prepared by semidry acid hydrolysis of these cellulosic biowastes. Semidry acid hydrolysis could also be effectively used for hydrolyzing non-cellulosic polysaccharides of dry cyanobacterial biomass. The described semidry acid hydrolysis of cellulosic biowastes in this study might be applicable not only for bacterial biohydrogen production but also for various hydrolyzed cellulose-based fermentation biotechnologies.


Sign in / Sign up

Export Citation Format

Share Document