scholarly journals Electromagnetic Properties of Cold-Cure Silicone Mixtures Containing Multi-Walled Carbon Nanotubes

Author(s):  
A.G. Tkachev ◽  
◽  
N.R. Memetov ◽  
R.A. Stolyarov ◽  
N.A. Chapaksov ◽  
...  

Nanocomposite materials based on a cold-cure silicone mixture containing multi-walled carbon nanotubes were obtained. The concentration dependences of the radio-physical properties of materials were investigated. An increase in the efficiency of shielding electromagnetic radiation in the radio frequency range of wavelengths with increasing concentrations of multi-walled carbon nanotubes up to 10 wt. % was verified.

Author(s):  
Fadzidah Mohd Idris ◽  
Khamirul Amin Matori

The rapid growth of electronic systems and devices operating within the gigahertz (GHz) frequency range has increased electromagnetic interference. In order to eliminate or reduce the spurious electromagnetic radiation levels more closely in different applications, there is strong research interest in electromagnetic absorber technology. Moreover, there is still a lack of ability to absorb electromagnetic radiation in a broad frequency range using thin thickness. Thus, this study examined the effect of incorporating magnetic and dielectric materials into the polymer matrix for the processing of radar absorbing materials. The experiment evaluated the sample preparation with different weight percentages of multi-walled carbon nanotubes (MWCNT) mixed with Ni0.5Zn0.5Fe2O4 (Nickel-Zinc-Ferrite) loaded into epoxy (P) as a matrix. The prepared samples were analysed by examining the reflectivity measurements in the 8 – 18 GHz frequency range and conducting a morphological study using scanning electron microscopy analyses. The correlation of the results showed that different amounts of MWCNT influenced the performance of the microwave absorber. As the amount of MWCNTs increased, the reflection loss (RL) peak shifted towards a lower frequency range and the trend was similar for all thicknesses. The highest RL was achieved when the content of MWCNTs was 2 wt% with a thickness of 2 mm with an RL of – 14 dB at 16 GHz. The 2.5 GHz bandwidth corresponded to the RL below -10 dB (90% absorption) in the range of 14.5 – 17 GHz. This study showed that the proposed experimental route provided flexible absorbers with suitable absorption values by mixing only 2 wt% of MWCNTs.


2019 ◽  
Vol 9 (20) ◽  
pp. 4388 ◽  
Author(s):  
Artyom Plyushch ◽  
Jan Macutkevič ◽  
Polina Kuzhir ◽  
Aliaksei Sokal ◽  
Konstantin Lapko ◽  
...  

Hybrid composite materials based on an aluminium phosphate matrix with silicon carbide whiskers and multi-walled carbon nanotubes were studied in a wide frequency range (20 Hz to 36 GHz). It was demonstrated, that the addition of the silicon carbide whiskers enhances the dielectric permittivity and conductivity. This was explained by the difference in tunnelling parameters. Hybrid ceramics with nanotubes and whiskers also exhibits substantially improved electromagnetic shielding properties. The hybrid ceramics with 10 wt. % silicon carbide whiskers and a 1 mm thick 1.5 wt. % carbon nanotube layer, show higher than 50% absorption of electromagnetic radiation.


2018 ◽  
Author(s):  
V. V. Bolotov ◽  
V. E. Kan ◽  
E. V. Knyazev ◽  
N. A. Davletkildeev ◽  
I. V. Ponomaryova ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (16) ◽  
pp. 8920-8928 ◽  
Author(s):  
Changqing Fang ◽  
Rong Yang ◽  
Zisen Zhang ◽  
Xing Zhou ◽  
Wanqing Lei ◽  
...  

Multiple-walled carbon nanotubes (MWCNTs) were employed as a reinforcing filler to study the synergistic effect between CNTs and rPET/TPU composites.


2007 ◽  
Vol 1006 ◽  
Author(s):  
Renato Amaral Minamisawa ◽  
Bopha Chhay ◽  
Daryush ILA

AbstractThe reported electromagnetic properties of carbon nanotubes (CNT) make them a promising material for nanoelectronic applications [1,2]. Addition of CNT has recently been shown to enhance mechanical properties of phenolic-resin polymers [3]. We are attempting to control the electrical transport behavior of phenolic-based polymers doped with CNT as a function of the different nanopowder concentration added to the polymer. In that regard, we developed a technique to obtain a material with homogenous dispersion of nanopowders, an important factor that influences the transport behavior. The chemical structure characterization was also evaluated using optical techniques.


2016 ◽  
Vol 73 ◽  
pp. 247-255 ◽  
Author(s):  
A.K.M. Mahmudul Haque ◽  
Geum Seok Oh ◽  
Taeoh Kim ◽  
Junhyo Kim ◽  
Jungpil Noh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document