scholarly journals HIGH-FREQUENCY DISTORTION PRODUCT OTOACOUSTIC EMISSIONS MEASURED BY TWO SYSTEMS: AN EXAMPLE OF A SUBJECT WITH NORMAL HEARING

2016 ◽  
Vol 6 (4) ◽  
pp. 57-61
2011 ◽  
Vol 22 (05) ◽  
pp. 253-264 ◽  
Author(s):  
Kim S. Schairer ◽  
Brooke Morrison ◽  
Ellyn Szewczyk ◽  
Cynthia G. Fowler

Background: The overall goal of the current study was to examine the relationships among uncompensated admittance (Ya) at ambient pressure extracted from tympanograms, energy reflectance (ER) measures at ambient pressure from wideband acoustic transfer functions (WATF), and distortion product otoacoustic emissions (DPOAEs). If WATF measures of Ya are comparable to tympanometric measures of Ya at ambient pressure, it would be further evidence that the two systems provide comparable information at ambient pressure. Such a relationship could be used as a cross-check or validation for WATF measures and support the use of WATFs in lieu of tympanograms in some applications. Finally, if WATF measures of Ya and/or ER at DPOAE stimulus frequencies can account for some of the variability observed in DPOAE levels and/or signal-to-noise ratios (SNRs) in ears with normal hearing, the relationships could be used to improve hearing screening procedures. Purpose: The hypotheses were as follows: (1) measures of Ya at ambient pressure are significantly correlated as measured with tympanometric and WATF procedures and (2) measures of Ya and ER at DPOAE stimulus frequencies are significantly correlated with DPOAE level and SNR. Research Design: Repeated measures in human adults. Study Sample: Forty ears of 20 adults with normal hearing and middle ear function were included in the final sample. Data Collection and Analysis: Tympanograms were obtained using probe frequencies of 226, 678, and 1000 Hz; WATFs were obtained using a click probe, and DPOAEs were elicited with f2's of 1000, 2000, and 4000 Hz. A repeated measures analysis of variance (RM-ANOVA) was completed to identify significant differences between ears and among probe frequencies for Ya measured at ambient pressure from the Tympstar and for Ya measured at the three closest frequencies on the WATFs. Lines were fit to the comparison of Ya from the Tympstar and WATF, and percent variance accounted for (r2) was calculated. Ya and ER were extracted at all stimulus frequencies that were used to elicit DPOAEs and were compared to DPOAE levels and SNRs. RM-ANOVAs were completed to identify any significant differences in DPOAE level and SNR between ears and among f2 conditions. Lines were fit to the comparison of Ya and ER measures at f1 and f2 with the DPOAE levels and SNRs. The relationship between behavioral air conduction threshold at each f2 and DPOAE level (and SNR) was examined with regression analysis. Results: Ya was significantly correlated between the tympanometric and WATF measures at all three probe-tone frequencies. Ya and ER at f1 and f2 were significantly correlated with DPOAE level for f2 = 4000 Hz. Conclusions: The implications are as follows: (1) WATFs, which can be obtained with the same probe microphone system as DPOAEs, could be used as a supplement to tympanometry in a diagnostic test battery, and the relationship between Ya measured on the two systems could be used for verification, and (2) Ya and ER measures from WATFs at both DPOAE stimulus frequencies account for some of the variability observed in DPOAE levels at f2 = 4000 Hz in normal ears.


2013 ◽  
Vol 22 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Fatima T. Husain

Purpose The aim of this study was to measure the effect of tinnitus, while accounting for the effect of hearing loss and aging, on distortion product otoacoustic emissions (DPOAEs). Method DPOAEs were measured twice in both ears in 5 groups of participants: young adults with normal hearing, middle-age adults with normal hearing, adults with high-frequency sensorineural hearing loss, age-matched adults with similar hearing loss and tinnitus, and adults with normal hearing and chronic tinnitus. Results Multivariate analysis revealed a main effect of hearing loss and age, but no effect of tinnitus, across all 5 groups. Separate tests revealed significant effects of age and tinnitus in the normal-hearing groups and hearing loss in adults with or without tinnitus, but no effect of tinnitus in those with hearing loss. Conclusion DPOAE levels in the group of adults with hearing loss and tinnitus were diminished, but those in the group with normal hearing and tinnitus were enhanced, relative to DPOAE levels in the controls. Outer hair cell function, as indexed by DPOAEs, exhibits a complex association with tinnitus, and this has implications in the use of DPOAEs as a tool both for testing for tinnitus presence and for creating a model of neural mechanisms underlying tinnitus.


2007 ◽  
Vol 25 (10) ◽  
pp. 1190-1195 ◽  
Author(s):  
Kristin R. Knight ◽  
Dale F. Kraemer ◽  
Christiane Winter ◽  
Edward A. Neuwelt

Purpose The objective is to describe progressive changes in hearing and cochlear function in children and adolescents treated with platinum-based chemotherapy and to begin preliminary evaluation of the feasibility of extended high-frequency audiometry and distortion product otoacoustic emissions for ototoxicity monitoring in children. Patients and Methods Baseline and serial measurement of conventional pure-tone audiometry (0.5 to 8 kHz) and evoked distortion product otoacoustic emissions (DPOAEs) were conducted for 32 patients age 8 months to 20 years who were treated with cisplatin and/or carboplatin chemotherapy. Seventeen children also had baseline and serial measurement of extended high-frequency (EHF) audiometry (9 to 16 kHz). Audiologic data were analyzed to determine the incidence of ototoxicity using the American Speech-Language-Hearing Association criteria, and the relationships between the different measures of ototoxicity. Results Of the 32 children, 20 (62.5%) acquired bilateral ototoxicity in the conventional frequency range during chemotherapy treatment, and 26 (81.3%) had bilateral decreases in DPOAE amplitudes and dynamic range. Of the 17 children with EHF audiometry results, 16 (94.1%) had bilateral ototoxicity in the EHF range. Pilot data suggest that EHF thresholds and DPOAEs show ototoxic changes before hearing loss is detected by conventional audiometry. Conclusion EHF audiometry and DPOAEs have the potential to reveal earlier changes in auditory function than conventional frequency audiometry during platinum chemotherapy in children.


2016 ◽  
Vol 22 ◽  
pp. 2028-2034 ◽  
Author(s):  
Ualace De Paula Campos ◽  
Stavros Hatzopoulos ◽  
Lech K. Śliwa ◽  
Piotr H. Skarżyński ◽  
Wiesław W. Jędrzejczak ◽  
...  

2005 ◽  
Vol 48 (5) ◽  
pp. 1165-1186 ◽  
Author(s):  
Tracy S. Fitzgerald ◽  
Beth A. Prieve

Although many distortion-product otoacoustic emissions (DPOAEs) may be measured in the ear canal in response to 2 pure tone stimuli, the majority of clinical studies have focused exclusively on the DPOAE at the frequency 2f1-f2. This study investigated another DPOAE, 2f2-f1, in an attempt to determine the following: (a) the optimal stimulus parameters for its clinical measurement and (b) its utility in differentiating between normal-hearing and hearing-impaired ears at low-to-mid frequencies (≤2000 Hz) when measured either alone or in conjunction with the 2f1-f2 DPOAE. Two experiments were conducted. In Experiment 1, the effects of primary level, level separation, and frequency separation (f2/f1) on 2f2-f1 DPOAE level were evaluated in normal-hearing ears for low-to-mid f2 frequencies (700–2000 Hz). Moderately high-level primaries (60–70 dB SPL) presented at equal levels or with f2 slightly higher than f1 produced the highest 2f2-f1 DPOAE levels. When the f2/f1 ratio that produced the highest 2f2-f1 DPOAE levels was examined across participants, the mean optimal f2/f1 ratio across f2 frequencies and primary level separations was 1.08. In Experiment 2, the accuracy with which DPOAE level or signal-to-noise ratio identified hearing status at the f2 frequency as normal or impaired was evaluated using clinical decision analysis. The 2f2-f1 and 2f1-f2 DPOAEs were measured from both normal-hearing and hearing-impaired ears using 2 sets of stimulus parameters: (a) the traditional parameters for measuring the 2f1-f2 DPOAE (f2/f1 = 1.22; L1, L2 = 65, 55 dB SPL) and (b) the new parameters that were deemed optimal for the 2f2-f1 DPOAE in Experiment 1 (f2/f1 = 1.073, L1 and L2 = 65 dB SPL). Identification of hearing status using 2f2-f1 DPOAE level and signal-to-noise ratio was more accurate when the new stimulus parameters were used compared with the results achieved when the 2f2-f1 DPOAE was recorded using the traditional parameters. However, identification of hearing status was less accurate for the 2f2-f1 DPOAE measured using the new parameters than for the 2f1-f2 DPOAE measured using the traditional parameters. No statistically significant improvements in test performance were achieved when the information from the 2 DPOAEs was combined, either by summing the DPOAE levels or by using logistic regression analysis.


Sign in / Sign up

Export Citation Format

Share Document