scholarly journals Nonlinear Strain Hardening Parameter Comparison for Stainless Steel

2017 ◽  
Vol 10 (18) ◽  
pp. 1-7
Author(s):  
K. K. Riyas Moideen ◽  
U. K. Dewangan ◽  
◽  
Author(s):  
Yoichi Takeda ◽  
Zhanpeng Lu ◽  
Takeshi Adachi ◽  
Qunjia Peng ◽  
Jiro Kuniya ◽  
...  

It is known that stress corrosion cracking (SCC) found in the operational power plants show complex cracking behaviors and it’s resulted in complex crack shape e.g. crack branching and its uneven crack front. For the cracking near the weldment, this is due to crack penetrated along the complex distribution of residual stress and strain hardened area. In this investigation, in order to advance the accuracy for crack growth prediction with considering such complex fields, theoretical formulation for SCC growth was further modified. Hardness of the materials, which is a measureable parameter even in operational power plant, was focused on to reflect strain hardening of the component like heat affected zone of the weldments. The theoretical formulation for SCC growth has terms with yield strength of the material and strain hardening exponent to describe crack tip strain rate. Strain hardening was simulated by cross rolling with the range of 4 – 32% as thickness reduction. Correlation between yield strength, strain hardening exponent at 288°C and Vickers hardness was obtained by means of tensile tests and hardness tests on 316L stainless steel. It was observed that a monotonic increase in Vickers hardness and yield strength with degree of reduction in thickness worked by cross rolling. Relationship between Vickers hardness and yield strength was found to have linear correlation. Further confirmation was made by plotting the reported mechanical properties data in terms of Vickers hardness. In addition, linear relationship was found between yield strength and strain hardening exponent. These relationships were introduced into SCC theoretical formulation and a SCC growth rate prediction curve in terms of Vickers hardness was proposed. SCC crack growth evaluation tests with selected work hardened 316L stainless steel were performed in oxygenated pure water environment at 288°C to confirm the predictability of the formulation. The prediction curve had a good agreement with available literature data as well as obtained crack growth rates in the hardness range of 140–300HV which was likely expected one in weld HAZ.


1982 ◽  
Vol 104 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Y. Ohashi ◽  
N. Ohno ◽  
M. Kawai

Four kinds of creep constitutive models, i.e., strain-hardening, modified strain-hardening, kinematic-hardening, and mixed-hardening theory, are evaluated on the basis of creep-test results on type 304 stainless steel at 650°C under repeated multiaxial loading. The predictions of the four models are compared with the experimental results. It is shown that substantial differences appear among these predictions under large rotations of the principal axes of the deviatoric stress tensor, and that none of them can describe with sufficient accuracy the transient increase of strain-rate and the noncollinearity between the deviatoric stress and creep strain-rate vectors which are observed just after the stress-rotations.


2014 ◽  
Vol 622-623 ◽  
pp. 179-185 ◽  
Author(s):  
Piotr Skubisz ◽  
Maciej Rumiński ◽  
Łukasz Lisiecki

The paper presents selected aspects of analysis cold micro-forging process of a screw made of austenitic stainless steel, concerning relation between strain and hardness. Strain hardening character of a material in consecutive forming operations was analyzed experimentally by the measurement of hardness distribution made on longitudinal axial sections of screws. The relationship between hardness and effective strain (hardness curve) was determined, which made it possible to obtain strain distributions in different regions of a material subjected to cold deformation on the basis of strain distribution numerically estimated with FEM simulation performed using QForm2D/3D commercial software. Conclusions were formulated concerning strain inhomogeneity and strain-hardening intensity with respect to the correlation between strain and hardness. It was also concluded, that nonuniformity of hardening rate in a bulk can lead to local variations in flow stress and eventually, to occurrence of the metal flow related defects, which was illustrated with a case study of cold heading of self-tapping screw of AISI 304Cu stainless steel, with large head diameter to shank diameter ratio. In order to validate the obtained results, the same method was used for analysis of hardness development in steel 19MnB4.


Sign in / Sign up

Export Citation Format

Share Document