scholarly journals Experimental Study of Friction Factor for Iraqi Crude Oil by Using Nano-Al2O3 as Drag Reduction Agent (DRA)

2019 ◽  
Vol 12 (33) ◽  
pp. 1-4
Author(s):  
Thamer Jasim Mohammed ◽  
Saad Nahi Saleh ◽  
Huda Kadhim Hassan ◽  
◽  
◽  
...  
Author(s):  
Rabeeah H. Sultan ◽  
Abduelmaged B. Abduallah ◽  
Omar M. Sultan M. Sultan

In this study the applicability of the Libyan crude oil flow induced by improved lab pumping system was examined in order to evaluate the effect of adding polymeric materials of Polystyrene and Polydimethylsiloxane as drag reducing agents (DRA) on the flow of Sharara crude oil in the pipeline. The polymers are injected through a pumping system at different concentrations rounded between (10-100) ppm. Several experiments were carried out to determine the best concentration of polymer, which satisfied lowest drag force on of crude oil flow rate. Furthermore, the effect of additive concentration on the Viscosity(μ), friction factor (ƒ), percentage drag reduction (%DR) and the amount of flow increases (%FI) were determined. The results show that the activities of Polydimethylsiloxane for Drag reduction is higher than drag reduction for Polystyrene. However, the %DR is generally increased with increasing of polymer concentration for all tested additives. It is progressively increased with increasing Reynolds number (Re) at any specific concentration of the polymeric additives. The friction factor is well correlated with Reynolds numbers and polymer concentration according to the relation of the form ƒ= k ReaCb, the results showed good agreement between the observed values and the predicted ones.


2015 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yanuar Yanuar ◽  
Kurniawan T. Waskito ◽  
Gunawan Gunawan ◽  
Budiarso Budiarso

2021 ◽  
Vol 205 ◽  
pp. 108881
Author(s):  
Xuedong Gao ◽  
Qiyu Huang ◽  
Xun Zhang ◽  
Yu Zhang ◽  
Xiangrui Zhu ◽  
...  

1999 ◽  
Author(s):  
Yusuf A. Uskaner

Abstract This paper presents an aproach for the prediction of heat transfer augmentation in decaying swirling flow in a pipe by making an analogy between the increase in friction factor due to swirl and increase in heat transfer due to swirl. The proposed method can be used to predict heat transfer for decaying swirling flow in smooth and rough pipes which can be applied to different swirl generators based on the known inlet swirl conditions. An experimental study is performed regarding the swirling flow of air in smooth and rough pipes. The experimental study covered only the fluid dynamics of swirling flow. No heat transfer experiments were done. It is determined experimentally that in swirling flows degree of swirl decays continuously along the smooth and rough pipes and the total loss factor is the sum of friction factor for non-swirling flow and the swirl loss factor. Swirl loss factor is found to be a function of the degree of swirl and pipe relative roughness. Using the relations obtained experimentally for the variation of swirl strength and loss factor along the pipe, an equation is proposed to be used for the prediction of heat transfer in turbulent decaying swirling flows.


Sign in / Sign up

Export Citation Format

Share Document