Drag Reduction and Velocity Profiles Distribution of Crude Oil Flow in Spiral Pipes

2015 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yanuar Yanuar ◽  
Kurniawan T. Waskito ◽  
Gunawan Gunawan ◽  
Budiarso Budiarso
Author(s):  
W. Reid Dreher ◽  
Ray Johnston ◽  
Peter Lauzon ◽  
Joey Pierce

As worldwide heavy crude oil production increases, pipelines are faced with challenges to transport these higher viscosity fluids. Historically, heavy crude oil has been a challenge for existing commercially available DRAs. As crude oil gravities fall below ∼23 °API, existing DRAs become ineffective. ConocoPhillips Specialty Products Inc. (CSPI) developed a new class of DRAs to address this need. CSPI’s new heavy crude oil DRA technology, ExtremePower™ Flow Improvers, is proven to increase deliveries of produced heavy crude oil to market. In this paper we will discuss the mechanism of drag reduction, how a heavy crude oil DRA works, and two scenarios in which value is created by utilizing the product.


Author(s):  
Rabeeah H. Sultan ◽  
Abduelmaged B. Abduallah ◽  
Omar M. Sultan M. Sultan

In this study the applicability of the Libyan crude oil flow induced by improved lab pumping system was examined in order to evaluate the effect of adding polymeric materials of Polystyrene and Polydimethylsiloxane as drag reducing agents (DRA) on the flow of Sharara crude oil in the pipeline. The polymers are injected through a pumping system at different concentrations rounded between (10-100) ppm. Several experiments were carried out to determine the best concentration of polymer, which satisfied lowest drag force on of crude oil flow rate. Furthermore, the effect of additive concentration on the Viscosity(μ), friction factor (ƒ), percentage drag reduction (%DR) and the amount of flow increases (%FI) were determined. The results show that the activities of Polydimethylsiloxane for Drag reduction is higher than drag reduction for Polystyrene. However, the %DR is generally increased with increasing of polymer concentration for all tested additives. It is progressively increased with increasing Reynolds number (Re) at any specific concentration of the polymeric additives. The friction factor is well correlated with Reynolds numbers and polymer concentration according to the relation of the form ƒ= k ReaCb, the results showed good agreement between the observed values and the predicted ones.


2020 ◽  
Author(s):  
Yanuar ◽  
Gunawan ◽  
M. Raihan Setiawan ◽  
Whisnu Febriansyah ◽  
Angga Arianda
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ali A. Abdul-Hadi ◽  
Anees A. Khadom

The influence of SDBS, SLS, SLES, and SS as drag reducing agents on flow of Iraqi crude oil in pipelines was investigated in the present work. The effect of additive type, additive concentration, pipe diameter, solution flow rate, and the presence of elbows on the percentage of drag reduction (%Dr) and the amount of flow increases (%FI) was addressed. The maximum drag reduction was 55% obtained at 250 ppm SDBS surfactant flowing in straight pipes of 0.0508 m I.D. The dimensional analysis was used for grouping the significant quantities into dimensionless groups to reduce the number of variables. The results showed good agreement between the observed drag reduction percent values and the predicted ones with high value of the correlation coefficient.


Author(s):  
Ali Nasir Khalaf ◽  
Asaad A. Abdullah

This work explores the possibility of using Newtonian turbulence k−ϵ and k−ω models for modelling crude oil flow in pipelines with drag reduction agents. These models have been applied to predict the friction factor, pressure drop and the drag reduction percentage. The simulation results of both models were compared with six published experimental data for crude oil flow in pipes with different types of drag reduction agents. The velocity near the wall was determined using the log law line of Newtonian fluid equation and by changing the parameter ΔB to achieve an excellent agreement with experimental data. Simulated data for k−ϵ model shows better agreement with most experimental data than the k−ω turbulence model.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


2010 ◽  
Vol 145 ◽  
pp. 282-286
Author(s):  
Qing Xue Huang ◽  
Jian Mei Wang ◽  
Yu Gui Li ◽  
Li Feng Ma ◽  
Chun Jiang Zhao

No 460 oil-film bearing oil as the dedicated lubricant is regarded as the incompressible Newtonian fluid. To comprehensively analyze the real oil flow state, the mathematical model on velocity profiles, together with its dimensionless equations, is established, and the calculating program is developed to simulate the 3D velocity profiles and velocity gradients at different oil flow layers. The relationship between velocity profiles and the oil film pressure is discussed, and the velocity tendency is consistent with the general velocity profile of wedge cross section. The conclusions are beneficial to the further study on lubricating performances of heavy contact components and to prolong their service lives.


Energy Policy ◽  
2007 ◽  
Vol 35 (10) ◽  
pp. 5035-5050 ◽  
Author(s):  
Yuan Zhao ◽  
Li-Sha Hao ◽  
Lu Wan

2015 ◽  
Vol 50 (3) ◽  
pp. 236-247 ◽  
Author(s):  
G. Koch ◽  
F. Ayello ◽  
V. Khare ◽  
N. Sridhar ◽  
A. Moosavi

Sign in / Sign up

Export Citation Format

Share Document