Recipe for standard BG-11 media v1

Author(s):  
Anna Behle ◽  
Alice Pawlowski

Stanier RY, Deruelles J, Rippka R, Herdman M, Waterbury JB: Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 1979, 111:1–61. Recipes for standard and alternative BG11 for culturing freshwater cyanobacteria, such as Synechocystis sp. PCC 6803, as described. Media is usually not suitable for marine cyanobacteria. Final Concentration of Medium. CaCl2*2 H2O 0.036 g/L Citric acid 0.006 g/L NaNO3 1.4958 g/L MgSO4* 7 H2O 0.0749 g/L 0.25M Na2EDTA (pH 8) 0.0056 mL/L Na2CO3 20 µg/ml Fe(III) Ammonium citrate 6 µg/ml K2HPO4 * 3H2O 30 µg/ml TES Buffer (pH 8) 10 mM H3BO3 2.86 mg/L MnCl2 * 4 H2O 1.81 mg/L ZnSO4 * 7 H2O 0.222 mg/L Na2MoO4 * 2 H2O 0.390 mg/L Co(NO3)2 *6 H2O 0.049 mg/L (CuSO4 * 5 H2O 0.079 mg/L if required)

1991 ◽  
Vol 266 (17) ◽  
pp. 11111-11115
Author(s):  
M. Ikeuchi ◽  
B. Eggers ◽  
G.Z. Shen ◽  
A. Webber ◽  
J.J. Yu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anushree Bachhar ◽  
Jiri Jablonsky

AbstractPhosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fluxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual flux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% flux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2–14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) flux via PKET pathway reaching up to 252% of the flux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low affinity to S7P as a substrate.


FEBS Letters ◽  
2011 ◽  
Vol 585 (3) ◽  
pp. 585-589 ◽  
Author(s):  
Marina G. Rakhimberdieva ◽  
Fedor I. Kuzminov ◽  
Irina V. Elanskaya ◽  
Navassard V. Karapetyan
Keyword(s):  

Author(s):  
Thomas Vourc’h ◽  
Julien Léopoldès ◽  
Annick Méjean ◽  
Hassan Peerhossaini

Cyanobacteria are photosynthetic micro-organisms colonizing all aquatic and terrestrial environments. The motility of such living micro-organisms should make their diffusion distinct from typical Brownian motion. This diffusion can be investigated in terms of global behavior (Fickian or not) and in terms of displacement probabilities, which provide more detail about the motility process. Using cyanobacterium Synechocystis sp. PCC 6803 as the model micro-organism, we carry out time-lapse video microscopy to track and analyze the bacteria’s trajectories, from which we compute the mean-squared displacement (MSD) and the distribution function of displacement probabilities. We find that the motility of Synechocystis sp. PCC 6803 is intermittent: high-motility “run” phases are separated by low-motility “tumble” phases corresponding to trapped states. However, this intermittent motility leads to a Fickian diffusive behavior, as shown by the evolution of the MSD with time.


Sign in / Sign up

Export Citation Format

Share Document