scholarly journals Mathematical model bounds for maximizing the minimum completion time problem

2021 ◽  
Vol 20 (4) ◽  
pp. 43-50
Author(s):  
Mahdi Jemmali ◽  
Abdullah Alourani
2021 ◽  
Vol 50 (1) ◽  
pp. 5-12
Author(s):  
Hani Alquhayz ◽  
Mahdi Jemmali

This paper focuses on the maximization of the minimum completion time on identical parallel processors. The objective of this maximization is to ensure fair distribution. Let a set of jobs to be assigned to several identical parallel processors. This problem is shown as NP-hard. The research work of this paper is based essentially on the comparison of the proposed heuristics with others cited in the literature review. Our heuristics are developed using essentially the randomization method and the iterative utilization of the knapsack problem to solve the studied problem. Heuristics are assessed by several instances represented in the experimental results. The results show that the knapsack based heuristic gives almost a similar performance than heuristic in a literature review but in better running time.  


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahfooz Alam ◽  
Mahak ◽  
Raza Abbas Haidri ◽  
Dileep Kumar Yadav

Purpose Cloud users can access services at anytime from anywhere in the world. On average, Google now processes more than 40,000 searches every second, which is approximately 3.5 billion searches per day. The diverse and vast amounts of data are generated with the development of next-generation information technologies such as cryptocurrency, internet of things and big data. To execute such applications, it is needed to design an efficient scheduling algorithm that considers the quality of service parameters like utilization, makespan and response time. Therefore, this paper aims to propose a novel Efficient Static Task Allocation (ESTA) algorithm, which optimizes average utilization. Design/methodology/approach Cloud computing provides resources such as virtual machine, network, storage, etc. over the internet. Cloud computing follows the pay-per-use billing model. To achieve efficient task allocation, scheduling algorithm problems should be interacted and tackled through efficient task distribution on the resources. The methodology of ESTA algorithm is based on minimum completion time approach. ESTA intelligently maps the batch of independent tasks (cloudlets) on heterogeneous virtual machines and optimizes their utilization in infrastructure as a service cloud computing. Findings To evaluate the performance of ESTA, the simulation study is compared with Min-Min, load balancing strategy with migration cost, Longest job in the fastest resource-shortest job in the fastest resource, sufferage, minimum completion time (MCT), minimum execution time and opportunistic load balancing on account of makespan, utilization and response time. Originality/value The simulation result reveals that the ESTA algorithm consistently superior performs under varying of batch independent of cloudlets and the number of virtual machines’ test conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Chia-Lun Hsu ◽  
Jan-Ray Liao

The objective of this paper is to minimize both the makespan and the total completion time. Since parallel-machine scheduling which contains the function constraint problem has been a new issue, this paper explored two parallel-machine scheduling problems with function constraint, which refers to the situation that the two machines have a same function but one of the machines has another. We pointed out that the function constraint occurs not only in the manufacturing system but also in the service system. For the makespan problem, we demonstrated that it is NP-hard in the ordinary sense. In addition, we presented a polynomial time heuristic for this problem and have proved its worst-case ratio is not greater than 5/4. Furthermore, we simulated the performance of the algorithm through computational testing. The overall mean percent error of the heuristic is 0.0565%. The results revealed that the proposed algorithm is quite efficient. For the total completion time problem, we have proved that it can be solved in On4 time.


Author(s):  
Haochen Li ◽  
Jianguo Duan ◽  
Qinglei Zhang

In order to realize green manufacturing in the production process of semi-combined marine crankshaft structural parts, good job scheduling and reasonable workshop layout are the key. In traditional method, flexible job shop scheduling problem (FJSP) and the multi-row workshop layout problem (MRWLP) are regarded as separate tasks. However, the separate optimization method ignores the interaction between FJSP and MRWLP. Because the process sequencing of FJSP affects the layout results of processing machines, while the layout scheme of MRWLP affects the scheduling completion time through the transportation between processes. Therefore, it is very important to establish an integrated mathematical model for optimization of both layout and scheduling simultaneously to explore the common influence of the two resource constraints on scheduling results. At the same time, the transportation task is also a manufacturing process that cannot be ignored, which affects the completion time and energy consumption of the workshop, especially the heavy industrial manufacturing workshop with crane as transportation equipment. According to the established model, a five-segment coding including transportation information, layout information and processing information is designed, and two heuristic selection strategies are integrated into non-dominated sorting genetic algorithm II (NSGA-II) to optimize the iterative results twice. Finally, the effectiveness of the integrated mathematical model is verified by an example, which provides guidance for green manufacturing in the shipbuilding industry.


2020 ◽  
Vol 37 ◽  
pp. 59-68
Author(s):  
Maheta Ashish ◽  
Samrat V.O. Khanna

Cloud computing is provides resource allocation which facilitates the cloud resource provider responsible to the cloud consumers. The main objective of resource manager is to assign the dynamic resource to the task in the execution and measures response time, execution cost, resource utilization and system performance. The resource manager is optimizing the resource and measure the completion time for assign resource. The resource manager is also measure to execute the resource in the optimal way to complete the task in minimum completion time. The virtualization is techniques mandatory to allocate the dynamic resource depends on the users need. There are also green computing techniques involved for enhanced the no of server. The skewness is basically used to enhance the quality of service using the various parameters. The proposed algorithms are considered to allocate the cloud resource as per the users requirement. The advantage of proposed algorithm is to view the analysis of cpu utilization and also reduced the memory usage.


Sign in / Sign up

Export Citation Format

Share Document