scholarly journals Hardware Acceleration of Tsunami Wave Propagation Modeling in the Southern Part of Japan

2020 ◽  
Vol 10 (12) ◽  
pp. 4159
Author(s):  
Mikhail Lavrentiev ◽  
Konstantin Lysakov ◽  
Andrey Marchuk ◽  
Konstantin Oblaukhov ◽  
Mikhail Shadrin

In order to speed up the calculation of tsunami wave propagation, the field-programmable gate array (FPGA) microchip is used. This makes it possible to achieve valuable performance gain with a modern regular personal computer. The two half-step MacCormack scheme was used herein for numerical approximation of the shallow water system. We studied the distribution of tsunami wave maximal heights along the coast of the southern part of Japan. In particular, the dependence of wave maximal heights on the particular tsunami source location was investigated. Synthetic 100 × 200 km sources have realistic parameters corresponding to this region. As observed numerically, only selected parts of the entire coast line are subject to dangerous tsunami wave amplitudes. The particular locations of such areas strongly depend on the location of the tsunami source. However, the extreme tsunami heights in some of those areas can be attributed to local bathymetry. The proposed hardware acceleration to compute tsunami wave propagation can be used for rapid (say, in a few minutes) tsunami wave danger evaluation for a particular village or industrial unit on the coast.

Author(s):  
Mikhail M. Lavrentiev ◽  

The field programmable gates array (FPGA) microchip is applied to achieve considerable performance gain in simulation of tsunami wave propagation using personal computer. The two-step Mac-Cormack scheme was used for approximation of the shallow water equations. An idea of PC-based tsunami wave propagation simulation is described. Comparison with the available analytic solutions and numerical results obtained with the reference code show that developed approach provides good accuracy in simulations. It takes less then 1 minute to compute 1 hour of the wave propagation in computational domain that contains 3000 × 2500 nodes. Using the nested greed approach, it is possible to decrease the size of space step from about 300 meters to 10 m. Using the proposed approach, the entire computational process (to calculate the wave propagation from the source area to the coast) takes about 2 min. As an example the distribution of maximal heights of tsunami wave along the coast of the Southern part of Japan is simulated. In particular, the interrelation between maximal wave heights and location of tsunami source is studied. Model sources of size 100 × 200 km have realistic parameters for this region. It was found that only selected parts of the entire coast line are exposed to tsunami wave with dangerous height. However, the occurrence of extreme tsunami wave heights at some of those areas can be attributed to the local bathymetry. The proposed hardware acceleration to compute tsunami wave propagation can be used for rapid (say, during few minutes) evaluation of danger from tsunami wave for a particular location of the coast


Author(s):  
Mikhail Lavrentiev-jr ◽  
Alexey Romanenko ◽  
Vasily Titov ◽  
Alexander Vazhenin

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Irina Sirkova

AbstractThis work provides an introduction to one of the most widely used advanced methods for wave propagation modeling, the Parabolic Equation (PE) method, with emphasis on its application to tropospheric radio propagation in coastal and maritime regions. The assumptions of the derivation, the advantages and drawbacks of the PE, the numerical methods for solving it, and the boundary and initial conditions for its application to the tropospheric propagation problem are briefly discussed. More details are given for the split-step Fourier-transform (SSF) solution of the PE. The environmental input to the PE, the methods for tropospheric refractivity profiling, their accuracy, limitations, and the average refractivity modeling are also summarized. The reported results illustrate the application of finite element (FE) based and SSF-based solutions of the PE for one of the most difficult to treat propagation mechanisms, yet of great significance for the performance of radars and communications links working in coastal and maritime zones — the tropospheric ducting mechanism. Recent achievements, some unresolved issues and ongoing developments related to further improvements of the PE method application to the propagation channel modeling in sea environment are highlighted.


2018 ◽  
pp. 1-14
Author(s):  
Ekaterina Alekseevna Zabrodina ◽  
Yurii Nikolaevich Orlov ◽  
Viktor Olegovich Soloviev

Sign in / Sign up

Export Citation Format

Share Document