scholarly journals Analysis of the Reduction of Stability in Partially Filled Tank Vehicles

2021 ◽  
Vol 28 (6) ◽  
Keyword(s):  
Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


Author(s):  
Mohammad Mahdi Jalili ◽  
Mehrdad Motavasselolhagh ◽  
Rouhollah Fatehi ◽  
Mohammad Sefid

Author(s):  
M. Usman ◽  
M. Sajid

Abstract Sloshing characterized by inertial waves has an adverse effect on the directional dynamics and safety of partially filled tank vehicles, limiting their stability and controllability during steering, accelerating or braking maneuvers. A mathematical description of the transient fluid slosh in a horizontal cylindrical tank should consider the simultaneous lateral, vertical and roll excitations assuming potential flows and a linearized free-surface boundary condition. While the determination of vehicle stability would require coupling this model to a dynamic roll plane model of a tank vehicle resulting in a computationally expensive analysis. Considering the need for a simpler method to predict roll stability for partially filled tank vehicles, we explore the Zero Moment Point of a liquid domain as a novel solution to this challenge. Numerical investigations are carried out in a three-dimensional partially filled tanks while tracking the movement of the liquid-air interface by employing the volume of fluid method in OpenFOAM. The center of Mass and Zero Moment Point were calculated from the computational results using analytical expressions. The movement of free surface is found to be in good agreement with available literature. The center of mass of the liquid domain was traced as a practical means to quantify the slosh in the tanker. The analyses are performed for different fluid fill heights at varying speeds. The results suggest that the roll stability of tank vehicles can be efficiently analyzed using the zero moment point with significantly lower computational effort.


1989 ◽  
Vol 111 (3) ◽  
pp. 481-489 ◽  
Author(s):  
R. Ranganathan ◽  
S. Rakheja ◽  
S. Sankar

Steady turning model of a partially filled tank vehicle is developed by integrating the roll plane model of the partially filled arbitrarily shaped tank with the static roll plane model of an articulated vehicle. The rollover immunity of the tank vehicle is investigated through computer simulation. The motion of the free surface of liquid and the associated load shift encountered during steady turning are computed using an iterative algorithm. The influence of tank geometry and liquid fill level on the rollover immunity of the tank vehicles is presented. Rollover threshold levels of a tractor-semitrailer vehicle with tanks of circular, modified square and modified oval cross sections are investigated for various fill levels. The influence of compartmenting of the tank on the steady turning response of the vehicle is presented and an optimal order of unloading the various compartments is determined. The study concludes that load shift encountered during steady turning has an adverse effect on the overturning limits of the articulated liquid tank vehicles. The stability of such tank vehicles may be further affected by the dynamic fluid-structure interactions, vehicle transients and driver’s reaction.


Author(s):  
Liang Xu ◽  
Liming Dai

A mechanical model of liquid sloshing is developed to investigate the longitudinal dynamic characteristics of partially filled liquid cargo tank vehicles during typical straight-line driving. The dynamic liquid motion is modeled by utilizing a mechanical system that describes the behavior of the liquid motion as a linear spring-mass model augmented with an impact subsystem for longitudinal oscillations. Computer simulation of tank vehicles under rough road conditions is performed by incorporating the forces and moments caused by liquid motion into the pitch plane vehicle model. The fifth wheel loads and the normal axle loads, which are key factors to vehicle structure design, fatigue analysis and vehicle performance characteristics, are computed using the mechanical system approach in order to investigate the influence of liquid motion. This study presents a new approach to investigate the longitudinal dynamic behavior of partially filled tank vehicles under large amplitude liquid sloshing.


Sign in / Sign up

Export Citation Format

Share Document