scholarly journals Morphological evolution of the porous silicon surface for different etching time and current density in hf-ethanol solution

2015 ◽  
Vol 34 (3) ◽  
pp. 89
Author(s):  
Miguel Angelo Do Amaral Junior ◽  
Belchior Elton Lima da Silva ◽  
Neidenêi Gomes Ferreira ◽  
Antonio Fernando Beloto ◽  
Maurício Ribeiro Baldan
2020 ◽  
Vol 12 (3) ◽  
pp. 03024-1-03024-4
Author(s):  
L. V. Poperenko ◽  
◽  
S. G. Rozouvan ◽  
I. V. Yurgelevych ◽  
P. O. Lishchuk ◽  
...  

1996 ◽  
Vol 431 ◽  
Author(s):  
D. R. Tallant ◽  
M. J. Kelly ◽  
T. R. Guilinger ◽  
R. L. Simpson

AbstractWe performed in-situ photoluminescence and Raman measurements on an anodized silicon surface in the HF/ethanol solution used for anodization. The porous silicon thereby produced, while resident in HF/ethanol, does not immediately exhibit intense photoluminescence. Intense photoluminescence develops spontaneously in HF/ethanol after 18–24 hours or with replacement of the HF/ethanol with water. These results support a quantum confinement mechanism in which exciton migration to traps and nonradiative recombination dominates the de-excitation pathways until silicon nanocrystals are physically separated and energetically decoupled by hydrofluoric acid etching or surface oxidation. The porous silicon surface, as produced by anodization, shows large differences in photoluminescence intensity and peak wavelength over millimeter distances. Parallel Raman measurements implicate nanometer-size silicon particles in the photoluminescence mechanism.


1994 ◽  
Vol 358 ◽  
Author(s):  
Eric J. Lee ◽  
James S. Ha ◽  
Michael J. Sailor

ABSTRACTThe porous silicon (PS) surface is derivatized with ethanol, triethylsilanol and formic acid as well as oxidized with water. The two reactions used to prepare these surfaces are discussed, and FTIR spectra of the products are presented. Surface-modified PS retains 10-40% of its original photoluminescence. PS-derivatives display reversible luminescence quenching by gas phase water, ethanol, acetonitrile and benzene. The extent of quenching varies with different PS-derivatives depending on the interaction of the chemical vapor with the modified PS surfaces.


1995 ◽  
Vol 66 (7) ◽  
pp. 836-838 ◽  
Author(s):  
Patrick O’Keeffe ◽  
Yoshinobu Aoyagi ◽  
Shuji Komuro ◽  
Takashi Kato ◽  
Takitaro Morikawa

2021 ◽  
Vol 30 (1) ◽  
pp. 257-264
Author(s):  
Muna H. Kareem ◽  
Adi M. Abdul Hussein ◽  
Haitham Talib Hussein

Abstract In this study, porous silicon (PSi) was used to manufacture gas sensors for acetone and ethanol. Samples of PSi were successfully prepared by photoelectrochemical etching and applied as an acetone and ethanol gas sensor at room temperature at various current densities J= 12, 24 and 30 mA/cm2 with an etching time of 10 min and hydrofluoric acid concentration of 40%. Well-ordered n-type PSi (100) was carefully studied for its chemical composition, surface structure and bond configuration of the surface via X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy and photoluminescence tests. Results showed that the best sensitivity of PSi was to acetone gas than to ethanol under the same conditions at an etching current density of 30 mA/cm2, reaching about 2.413 at a concentration of 500 parts per million. The PSi layers served as low-cost and high-quality acetone gas sensors. Thus, PSi can be used to replace expensive materials used in gas sensors that function at low temperatures, including room temperature. The material has an exceptionally high surface-to-volume ratio (increasing surface area) and demonstrates ease of fabrication and compatibility with manufacturing processes of silicon microelectronics.


2017 ◽  
Vol 421 ◽  
pp. 82-88 ◽  
Author(s):  
F-Z. Tighilt ◽  
S. Belhousse ◽  
S. Sam ◽  
K. Hamdani ◽  
K. Lasmi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document