scholarly journals Comparison of Transfer Mass Matrix Method with Finite Element Method for Modal Analysis of beams

Author(s):  
Abhishek Kumar Sahu ◽  
Dr. Surajit Das ◽  
Author(s):  
Hanjing Lu ◽  
Xiaoting Rui ◽  
Jianshu Zhang ◽  
Yuanyuan Ding

Abstract The mixed method of Transfer Matrix Method for Multibody System (MSTMM) and Finite Element Method (FEM) is introduced in this paper. The transfer matrix and transfer equation of multi-rigid-body subsystem are deduced by MSTMM. The mass matrix and stiffness matrix of flexible subsystem are calculated by FEM and then its dynamics equation is established. The connection point relations among subsystems are deduced and the overall transfer matrix and transfer equation of multi-rigid-flexible system are established. The vibration characteristics of the system are obtained by solving the system frequency equation. The computational results of two numerical examples show that the proposed method have good agreements with MSTMM and FEM. Multi-rigid-flexible-body system with multi-end beam can be solved by proposed method, which extends the application field of MSTMM and provides a theoretical basis for calculating complex systems with multi input end flexible bodies of arbitrary shape.


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


Author(s):  
C. W. S. To

A novel procedure for large deformation nonstationary random response computation of shell structures with spatial uncertainty is presented. The procedure is free from the limitations associated with those employing perturbation approximation techniques, such as the so-called stochastic finite element method and probabilistic finite element method, for systems with spatial uncertainties. In addition, the procedure has several important and excellent features. Chief among these are: (a) ability to deal with large deformation problems of finite strain and finite rotation; (b) application of explicit linear and nonlinear element stiffness matrices, mass matrix, and load vectors reduces computation time drastically; (c) application of the averaged deterministic central difference scheme for the updating of co-ordinates and element matrices at every time step makes it extremely efficient compared with those employing the Monte Carlo simulation and the conventional central difference algorithm; and (d) application of the time co-ordinate transformation enables one to study highly stiff structural systems.


Sign in / Sign up

Export Citation Format

Share Document