scholarly journals Structure and properties of powder alloys Fe–(45-15)%Ni–(10-5)%Cu, obtained via mechanical alloying

2021 ◽  
pp. 82-87
Author(s):  
P. A. Loginov ◽  
E. N. Avdeenko ◽  
A. A. Zaitsev ◽  
E. A. Levashov
1998 ◽  
Vol 264 (1-2) ◽  
pp. 267-270 ◽  
Author(s):  
M.A Xueming ◽  
J.I Gang ◽  
Z Ling ◽  
D Yuanda

2005 ◽  
Vol 387 (1-2) ◽  
pp. 193-200 ◽  
Author(s):  
B. Bártová ◽  
D. Vojtěch ◽  
J. Verner ◽  
A. Gemperle ◽  
V. Studnička

Author(s):  
F. G. Lovshenko ◽  
G. F. Lovshenko ◽  
A. I. Khabibulin

Actual problem of modern welding production is the creation of electrodes for maximum performance and efficiency of the process whithin the required reliability and durability of the structure. A promising way to improve mechanical properties of the weld metal is the implementation of the mechanism of dispersion hardening. Reactionary mechanical alloying is an effective technology of obtaining nanocrystalline modifying ligatures and modifiers. The use of electrodes with an experimental coating containing a mechanically alloyed, composite ligature to resolve transcrystalline type of structure of the weld metal and reduce the grain size by 2.5–3.0 times (from # 8–9 to #11–12) reduces by 20–30% the threshold of cold brittleness and increase by 15– 25% of the mechanical properties of the weld metal.


Author(s):  
F. G. Lovshenko ◽  
A. I. Khabibulin

Preparation, structure and properties of modified welds by using electrodes with coatings, which contain, along with classical components, a modifying ligature. The ligature is mechanically and thermally synthesized composite submicrocrystalline powders with nanosized inclusions of aluminum oxides. Reactionary mechanical alloying is an effective technology of obtaining nanocrystalline modifying ligatures and modifiers. The use of electrodes with an experimental coating containing a mechanically alloyed, composite ligature to resolve transcrystalline type of structure of the weld metal and reduce the grain size by 2,5–3,0 times (from № 8–9 to № 11–12) reduces by 20–30% the threshold of cold brittleness and increase by 15–25% of mechanical properties of the weld metal.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 800
Author(s):  
Pavel Novák ◽  
Zdeněk Barták ◽  
Kateřina Nová ◽  
Filip Průša

This paper describes the structure and properties of an innovative Fe-Al-Si alloy with a reduced amount of silicon (5 wt. %) in order to avoid excessive brittleness. The alloy was produced by a combination of mechanical alloying and spark plasma sintering. Nickel and titanium were independently tested as the alloying elements for this alloy. It was found that wear resistance, which reached values comparable with tool steels, could be further improved by the addition of nickel. Nickel also improved the high-temperature oxidation behavior, because it lowers the liability of the oxide layers to spallation. Both nickel and titanium increased the hardness of the alloy. Titanium negatively influenced oxidation behavior and wear resistance because of the presence of titanium dioxide in the oxide layer and the brittle silicides that caused chipping wear, respectively.


Sign in / Sign up

Export Citation Format

Share Document