Determining the hardening curve and mechanical properties of rolled strips made of aluminium alloy AD33 with known chemical composition

2021 ◽  
pp. 70-74
Author(s):  
R. L. Shatalov ◽  
V. Kh. Fam ◽  
V. K. Chan
2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Alenka Šalej Lah ◽  
Maja Vončina ◽  
Irena Paulin ◽  
Jožef Medved ◽  
Peter Fajfar ◽  
...  

The influence of chemical composition and heat treatment on the mechanical properties and formability of the selected commercial aluminium alloy EN AW 5454 was investigated. The main properties of alloy 5454 from the AA 5xxx series are very good corrosion resistant and has good formability. From the cast slab a 50 mm thick slice was taken in the width cross section in the slab centre. One half of the slice was homogenised for 10 hours at a temperature of 530 °C. The cast and homogenised samples were investigated using light and scanning electron microscopy. For the study of the influence of the heat treatment, samples in the as-cast state were annealed in the laboratory furnace at a temperature of 530 °C for 4, 6, 8, 10 and 12 hours. To study the influence of chemical composition, four different samples were prepared: the first without additions, the second with an addition of 1 wt% Mn, the third with 3 wt% Mg and the fourth with an addition of both elements, Mn and Mg. The XRF analyses confirmed the desired chemical composition of all four produced alloys. Half of each alloy’s sample was homogenised at the same temperature and time as the base alloy in the as-cast state. The hot deformation behaviour of the different alloys was investigated using cylindrical hot compression tests performed on a Gleeble 1500D thermo-mechanical simulator. By comparing flow curves a high influence of the thermo-mechanical parameters on the alloy formability can be seen. The alloy has good workability and with the addition of Mn and Mg, the stress values are higher than those of the base alloy.  


2010 ◽  
Vol 5 (2) ◽  
pp. 55-63
Author(s):  
G. Raghu Babu ◽  
◽  
K.G.K. Murti ◽  
G. Ranga Janardhana ◽  
◽  
...  

2019 ◽  
Vol 85 (12) ◽  
pp. 43-50
Author(s):  
D. A. Movenko ◽  
L. V. Morozova ◽  
S. V. Shurtakov

The results of studying operational destruction of a high-loaded cardan shaft of the propeller engine made of steel 38KhN3MFA are presented to elucidate the cause of damage and develop a set of recommendations and measures aimed at elimination of adverse factors. Methods of scanning electron and optical microscopy, as well as X-ray spectral microanalysis are used to determine the mechanical properties, chemical composition, microstructure, and fracture pattern of cardan shaft fragments. It is shown that the mechanical properties and chemical composition of the material correspond to the requirements of the regulatory documentation, defects of metallurgical origin both in the shaft metal and in the fractures are absent. The microstructure of the studied shaft fragments is tempered martensite. Fractographic analysis revealed that the destruction of cardan shaft occurred by a static mechanism. The fracture surface is coated with corrosion products. The revealed cracks developed by the mechanism of corrosion cracking due to violation of the protective coating on the shaft. The results of the study showed that the destruction of the cardan shaft of a propeller engine made of steel 38Kh3MFA occurred due to formation and development of spiral cracks by the mechanism of stress corrosion cracking under loads below the yield point of steel. The reason for «neck» formation upon destruction of the shaft fragment is attributed to the yield point of steel attained during operation. Regular preventive inspections are recommended to assess the safety of the protective coating on the shaft surface to exclude formation and development of corrosion cracks.


2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Sign in / Sign up

Export Citation Format

Share Document