scholarly journals Research of mechanical properties and chemical composition of samples made of aluminium alloy AMg6 and obtained by electron beam additive manufacturing with wire feeding

Author(s):  
A V Gudenko ◽  
G V Grigoriev ◽  
A P Sliva ◽  
R Yu Agafonov ◽  
A N Kasitsyn
2019 ◽  
Vol 33 (10-12) ◽  
pp. 484-488
Author(s):  
A. P. Sliva ◽  
A. V. Gudenko ◽  
A. Yu Marchenkov ◽  
D. A. Zhgut ◽  
M. V. Goryachkina ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2020 ◽  
Vol 2020 (12) ◽  
pp. 15-20
Author(s):  
V.V. Skryabinskyi ◽  
◽  
V.M. Nesterenkov ◽  
V.R. Strashko ◽  
◽  
...  

2021 ◽  
Vol 225 ◽  
pp. 01011
Author(s):  
Marina Panchenko ◽  
Eugeny Melnikov ◽  
Valentina Moskvina ◽  
Sergey Astafurov ◽  
Galina Maier ◽  
...  

A comparative study of the mechanical properties, fracture mechanisms and hydrogen embrittlement peculiarities was carried out using the specimens of austenitic CrNi steel produced by two different methods: wire-feed electron beam additive manufacturing and conventional casting followed by solid-solution treatment. Hydrogen-induced reduction of ductility and the increase in the yield strength are observed in steel specimens produced by both methods. Despite hydrogen embrittlement index is comparable in them, the increase in the yield strength after hydrogen-charging is different: 25 MPa for cast steel and 175 MPa for additively manufactured steel. This difference is associated with the peculiarities of phase composition and phase distribution in steels produced by different methods.


Author(s):  
C. J. J. Torrent ◽  
P. Krooß ◽  
T. Niendorf

AbstractIn additive manufacturing, the thermal history of a part determines its final microstructural and mechanical properties. The factors leading to a specific temperature profile are diverse. For the integrity of a parameter setting established, periphery variations must also be considered. In the present study, iron was processed by electron beam powder bed fusion. Parts realized by two process runs featuring different build plate sizes were analyzed. It is shown that the process temperature differs significantly, eventually affecting the properties of the processed parts.


2019 ◽  
Vol 799 ◽  
pp. 294-299 ◽  
Author(s):  
Marek Stanisław Węglowski ◽  
Sylwester Błacha ◽  
Robert Jachym ◽  
Jan Dutkiewicz ◽  
Łukasz Rogal ◽  
...  

Electron beam (EBAM) and laser beam (LBAM) additive manufacturing processes with a deposited material in the form of a wire are an efficient methods enabling the making of component parts. The scope of the presented work was to investigate the influence of technological process on microstructure and mechanical properties such as tensile strength, microhardness and elongation of the fabricated components. The achieved results and gained knowledge will enable the production of a whole structure from stainless steel in the future. The metallographic examination revealed that the microstructure is not fully homogenies, the cell-dendritic areas occurred. Moreover, the microhardness profiles indicated that some fluctuation in the microstructure as well as mechanical properties can be observed on the cross section of deposited components. However, the mechanical tests showed that the tensile strength as well as elongation fulfil the requirement of producer of deposited wire.


2021 ◽  
Vol 11 (4) ◽  
pp. 427-432
Author(s):  
Elena Astafurova ◽  
Evgeny Melnikov ◽  
Sergey Astafurov ◽  
Marina Panchenko ◽  
Kseniya Reunova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document