scholarly journals The Role of Genetic Engineering in Management of Plant Parasitic Nematodes with Emphasis on Root-Knot Nematodes: A Review

2020 ◽  
Vol 38 (1) ◽  
Author(s):  
Mahmoud Mohamed Ahmed Youssef ◽  
Suzan Abd-Elazeim Hassabo
2017 ◽  
Vol 107 (7) ◽  
pp. 872-877 ◽  
Author(s):  
Ziduan Han ◽  
Stephanie Boas ◽  
Nathan E. Schroeder

The success of all plant-parasitic nematodes is dependent on the completion of several complex behaviors. The lesion nematode Pratylenchus penetrans is an economically important parasite of a diverse range of plant hosts. Unlike the cyst and root-knot nematodes, P. penetrans moves both within and outside of the host roots and can feed from both locations. Adult females of P. penetrans require insemination by actively moving males for reproduction and can lay eggs both within and outside of the host roots. We do not have a complete understanding of the molecular basis for these behaviors. One candidate modulator of these behaviors is the neurotransmitter serotonin. Previous research demonstrated an effect of exogenously applied serotonin on the feeding and male mating behaviors of cyst and root-knot nematodes. However, there are no data on the role of exogenous serotonin on lesion nematodes. Similarly, there are no data on the presence and function of endogenous serotonin in any plant-parasitic nematode. Here, we establish that exogenous serotonin applied to P. penetrans regulates both feeding and sex-specific behaviors. Furthermore, using immunohistochemistry and pharmacological assays, our data suggest that P. penetrans utilizes endogenous serotonin to regulate both feeding and sex-specific behaviors.


EDIS ◽  
2007 ◽  
Vol 2007 (19) ◽  
Author(s):  
R. Krueger ◽  
K. E. Dover ◽  
Robert McSorley ◽  
K. H. Wang

ENY-056, an 8-page fact sheet by R. Krueger, K. E. Dover, R. McSorley, and K. -H. Wang, introduces homeowners to the problem of root-knot nematodes, the use of marigolds as an allelopathic cover crop for nematode suppression. It describes the mode of action, planting tips, considerations, and frequently asked questions. Includes references and tables showing susceptibility of marigold varieties to root-knot and plant-parasitic nematodes in Florida. Published by the UF Department of Entomology and Nematology, August 2007. ENY-056/NG045: Marigolds (Tagetes spp.) for Nematode Management (ufl.edu)


2021 ◽  
Author(s):  
Radwa G. Mostafa ◽  
Aida M. El-Zawahry ◽  
Ashraf E. M. Khalil ◽  
Ameer E. Elfarash ◽  
Ali D. A. Allam

Abstract Background Plant-parasitic nematodes are extremely dangerous pests in a variety of economically important crops. The purpose of this study was a survey of all nematode species existing in banana from three sites in Assiut Governorate, Egypt and to characterize the most common species by morphological, morphometric and molecular techniques (PCR with species-specific primers). Then, study of resistance or sensitivity of some banana cultivars to root-knot nematodes.Methods and Results Four nematodes, Meloidogyne, Rotylenchulus reniformis, Helicotylenchus and Pratylenchus were isolated and identified from soil and root samples collected from banana plants. Most frequently occurring of plant parasitic nematode species in banana was Meloidogyne. Former research found differences in species and in resistance to root-knot nematodes among the examined plant cultivars. Identification of Root-knot nematodes by Characterize of morphometric, molecularly, morphological isolate of Meloidogyne related to banana plants. The results revealed that the identified nematode species, Meloidogyne javanica, is the most common plant-parasitic nematodes in all locations. Data on the susceptibility of the tested banana cultivars to M. javanica revealed that Grand Naine was highly susceptible (HS) however, Magraby was susceptible (S) but Williams and Hindi cultivars were moderately resistant (MR).Conclusions we concluded that a survey revealed the significant prevalence of Meloidogyne javanica, the most important nematodes on banana in Assiut. The morphometric, morphological, and molecular identification were harmonic with one another. In addition to the host response of certain banana cultivars, to M. javanica that resistance is of significance and can be helpful to incorporate through planning control measures for root- knot nematodes.


Author(s):  
Janete A. Brito

Abstract This chapter focuses on the efficacy of isoelectric focusing, which is a technique used for separating charged molecules by differences in their isoelectric point, in the examination of general proteins and specific enzymatic differences among plant parasitic nematodes, particularly the potato cyst and root knot nematodes.


2020 ◽  
pp. 181-200
Author(s):  
Aamir Raina ◽  
Mohammad Danish ◽  
Samiullah Khan ◽  
Hisamuddin Sheikh

Nematology ◽  
2015 ◽  
Vol 17 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Sebastian Eves-van den Akker ◽  
Catherine J. Lilley ◽  
John T. Jones ◽  
Peter E. Urwin

Several structures associated with feeding by plant-parasitic nematodes have been described using two terms, feeding tubes and feeding plugs. However, both of these terms encompass multiple structures of independent evolution, some of which are functionally distinct. We have reviewed the literature on both structures and provide a new perspective on the function of intracellular feeding tubes to maintain the integrity and efficacy of the feeding site. We propose that they provide sufficient hydraulic resistance against the feeding site pressure to prevent it from collapsing during feeding. In addition, we propose that extracellular feeding tubes of migratory ectoparasites should be considered as the functional analogue of the stylet of all other plant-parasitic nematodes for withdrawal of host cell cytoplasm and, therefore, provide an example of convergent evolution. We also suggest that the main role of the feeding plug, irrespective of origin or composition, may be in adhesion.


Sign in / Sign up

Export Citation Format

Share Document