Fuzzy Model of Situational Control of the Flight Parameters of an Autonomous Unmanned Aircraft under Uncertainty Conditions

2021 ◽  
Vol 22 (12) ◽  
pp. 650-659
Author(s):  
V. B. Melekhin ◽  
M. V. Khachumov

The article outlines the main problems of automatic planning of the behavior of an autonomous unmanned aerial vehicle in unstable air conditions. It is shown that the urgency of the problem is due to the fact that an autonomous unmanned aerial vehicle independently forms and implements its flight route without support from a ground control station. There is therefore a need to develop a method for automatic control of programmed movements associated with the implementation of the route constructed by the problem solver. To solve this problem we propose an approach to regulating the parameters of the state of dynamic objects based on the principle of situational control of the goal-directed behavior of complex systems in changing environmental conditions. The expediency of choosing this control principle is due to the fact that the state of an autonomous unmanned aerial vehicle during its flight is characterized by a large number of parameters and disturbing environmental factors. In order to effectively implement this control principle, we introduce the concept of a complete problematic situation, which consists of deviations of the state parameters of an autonomous unmanned aerial vehicle from the required values during flight and disturbing environmental factors. On this basis, a fuzzy model of situational control of the state parameters of an autonomous unmanned aerial vehicle functioning in an unstable environment is developed, in which linguistic variables and functions are used to provide a generalized presentation of reference problem situations, as well as to describe the deviations of the state parameters and disturbing environmental factors. The conditions are determined under which the reference indistinctly presented problem situations generalize the actual problem situations that arise at the control object. This makes it possible to significantly reduce the number of logical-transformational decision rules in the situational control model and to promptly automatically determine effective control actions in problematic situations that ensure the effective implementation of programmed movements of an autonomous unmanned aerial vehicle under conditions of uncertainty. In conclusion, it is shown that for the implementation of control actions which are selected on a situational basis with increased requirements for the accuracy of regulation of the time-varying parameters of the control object and a significant level of possible discrepancies between their actual and specified values in conditions of uncertainty, it is advisable to use indistinctly implemented proportional, integral and differential regulation laws.

2018 ◽  
Vol 92 (3) ◽  
pp. 318-328
Author(s):  
Marcin Chodnicki ◽  
Katarzyna Bartnik ◽  
Miroslaw Nowakowski ◽  
Grzegorz Kowaleczko

Purpose The motivation to perform research on feedback control system for unmanned aerial vehicles, a fact that each quadrocopter is unstable. Design/methodology/approach For this reason, it is necessary to design a control system which is capable of making unmanned aerial vehicle vertical take-off and landing (UAV VTOL) stable and controllable. For this purpose, it was decided to use a feedback control system with cascaded PID controller. The main reason for using it was that PID controllers are simple to implement and do not use much hardware resources. Moreover, cascaded control systems allow to control object response using more parameters than in a standard PID control. STM32 microcontrollers were used to make a real control system. The rapid prototyping using Embedded Coder Toolbox, FreeRTOS and STM32 CubeMX was conducted to design the algorithm of the feedback control system with cascaded PID controller for unmanned aerial vehicle vertical take-off and landings (UAV VTOLs). Findings During research, an algorithm of UAV VTOL control using the feedback control system with cascaded PID controller was designed. Tests were performed for the designed algorithm in the model simulation in Matlab/Simulink and in the real conditions. Originality/value It has been proved that an additional control loop must have a full PID controller. Moreover, a new library is presented for STM32 microcontrollers made using the Embedded Coder Toolbox just for the research. This library enabled to use rapid prototyping while developing the control algorithms.


2012 ◽  
Vol 225 ◽  
pp. 555-560
Author(s):  
Javaan Chahl

Much of aerospace academia is anticipating a boom in Unmanned Aerial Vehicle (UAV) funding and research opportunities. The expectation is built on the premise that UAVs will revolutionize aerospace, which is likely based on current trends. There is also an anticipation of an increasing number of new platforms and research investment, which is likely but must be analyzed carefully to determine where the opportunities might lie. This paper draws on the state of industry and a systems engineering approach. We explore what aspects of UAVs really are the results of aerospace science advances and what aspects will be rather more mundane works of engineering.


2012 ◽  
Vol 45 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Shaaban A. Salman ◽  
Sreenatha G. Anavatti

2019 ◽  
Vol 27 (4) ◽  
pp. 79-85
Author(s):  
Aramis Viktorovich Tishchenko ◽  
Anatoly Mikhailovich Kulabukhov ◽  
Victor Alexandrovich Masalskiy

The article presents the synthesis of a functional diagram of an adaptive automatic control system (ACS) for controlling an aircraft with an automatically reconfigurable multidimensional PI controller, which provides the minimum static and minimum mean square error of control with minimal energy consumption for the formation of the control exposure. The synthesis of ACS algorithms is performed as a result of solving the problem of conditionally minimizing the quadratic functional of the generalized work (taking into account restrictions on state variables and control actions given by differential equations of the control object (CO) and inequalities). The mathematical description of the multidimensional CO is carried out using the CO model in the state space, which automatically takes into account the mutual influence of individual control loops on each other. As the state variables of the aircraft, linear displacements, speeds and accelerations of the center of mass of the aircraft, and angular displacements, speeds and accelerations of the rotational movement of the aircraft relative to the center of mass are used. The matrix equation of dynamics of the aircraft is formed by a system of nonlinear differential equations of the first order of forces and moments of forces acting on the aircraft. To ensure the minimum static control error, integrators are included in the ACS (for each control action). The algorithm for the formation of control actions of the extended CO, providing the declared properties of the ACS, is obtained as a result of solving the problem of conditional minimization of the generalized work functional. The task of conditional minimization of a functional with constraints is performed by the maximum principle. The resulting two-point boundary value problem is transformed by the invariant immersion method into a Cauchy problem for optimal values of state variables. The evaluation of the characteristics of a specific adaptive ACS for the spacecraft is expected to be obtained as a result of further research by mathematical modeling.


2014 ◽  
Vol 704 ◽  
pp. 270-276
Author(s):  
Renato A. Aguiar ◽  
Fabrizio Leonardi

The primary goal of this work is to propose an alternative methodology as a first approach in the design of control systems by means of a feedback state gain. The proposed method is detailed and an application is presented. The results show relevant aspects regarding the state feedback gain, especially in regard to variation in the parameters of the plant.


2021 ◽  
Vol 4 (2(112)) ◽  
pp. 18-25
Author(s):  
Oleksandr Volkov ◽  
Mykola Komar ◽  
Dmytro Volosheniuk

Identifying and categorizing contours in images is important in many areas of computer vision. Examples include such operational tasks solved by using unmanned aerial vehicles as dynamic monitoring of the condition of transport infrastructure, in particular road markings. This study has established that current methods of image contour analysis do not produce clear and reliable results when solving the task of monitoring the state of road markings. Therefore, it is a relevant scientific and applied task to improve the methods and models of filtration, processing of binary images, and qualitative and meaningful separation of the boundaries of objects of interest. To solve the task of highlighting road marking contours on images acquired from an unmanned aerial vehicle, a method has been devised that includes an operational tool for image preprocessing – a combined filter. The method has several advantages and eliminates the limitations of known methods in determining the boundaries of the location of the object of interest, by highlighting the contours of a cluster of points using histograms. The method and procedures reported here make it possible to successfully solve problems that are largely similar to those that an expert person can face when solving intelligent tasks of processing and filtering information. The proposed method was verified at an enterprise producing the Ukrainian unmanned aerial vehicle "Spectator" during tests of information technology of dynamic monitoring of the state of transport infrastructure. The results could be implemented in promising intelligent control systems in the field of modeling human conscious behavior when sorting data required for the perception of environmental features


Author(s):  
В.Б. Мелехин ◽  
М.В. Хачумов

Обозначены основные проблемы, связанные с разработкой интеллектуального решателя задач автоматической системы управления целенаправленным поведением интегрального беспилотного летательного аппарата в наземной проблемной среде. Рассмотрена конструкция типовых элементов представления знаний безотносительно к конкретной предметной области, позволяющих автономному беспилотному летальному аппарату, оснащенному манипулятором и системой технического зрения, решать сложные задачи в априори неописанных проблемных средах. Разработаны инструментальные средства разбиения сложных задач на подзадачи, обеспечивающие эффективный поиск их решения в пространстве состояний на основе типовых элементов представления знаний. Сформулированы основные методические положения, позволяющие синтезировать процедуры планирования целенаправленного поведения интегрального беспилотного летательного аппарата в сложных априори неописанных условиях функционирования. The main problems associated with the development of an intelligent problem solver of an automatic control system for the goal-seeking behavior of an integral unmanned aerial vehicle in a terrestrial problem environment are identified. The design of the typical elements of knowledge representation irrelative to the specific subject area is considered, allowing an autonomous unmanned aerial vehicle equipped with a manipulator and a vision system to solve complex problems in a priori undescribed problem environments. Tools are developed for partitioning complex tasks into sub-tasks, which provide an effective search for their solutions in the state space based on typical elements of knowledge representation. The main methodological provisions are formulated that allow synthesizing the planning procedures for the goal-seeking behavior of an integral unmanned aerial vehicle in a priori undescribed complex operating conditions.


Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1731 ◽  
Author(s):  
Wern Ong ◽  
Wing Chiu ◽  
Thomas Kuen ◽  
Jayantha Kodikara

Sign in / Sign up

Export Citation Format

Share Document