scholarly journals Method of winch drive permanent magnet inverted motor design

Vestnik IGEU ◽  
2019 ◽  
pp. 51-58
Author(s):  
M.V. Sakharov ◽  
V.N. Karaulov

Designing a permanent magnet synchronous motor (PMSM) of a winch drive needs to take into account the features of this machine. The engine has an inverted design with limited dimensions, is powered by a fre-quency converter, runs at the nominal power frequency and nominal load without using the damping winding and frequency start, and provides the required range of rope winding speeds. There is no specialized engi-neering design methodology for the winch drive PMSM. It is required to make changes and additions to the existing methods of designing synchronous machines when solving the problem of designing a winch drive PMSM. Design and validation calculations were performed in the Mathcad environment based on the tech-nique of designing machines with V.A. Balagurov’s permanent magnets and methods of designing general-purpose industrial synchronous machines with electromagnetic excitation. Field models of PMSM were used for modelling electromechanical processes and thermal status. The developed technique of designing the winch drive permanent magnet inverted motor is different from the known methods and due to this allows accounting for the design features of PMSM in the calculation of the size of the machine, the magnets, the stator core, the choice of electromagnetic loads, the design of the stator winding, the choice of the cooling system and the steel grade of the stator core. The specific requirements of the technical specification are taken into account when calculating the number of poles and the frequency of the supply voltage. A design project of the inverted PMSM of the winch drive has been developed. And the paper presents the design and verification calculations results. The reliability of the results was checked by field modeling of electromechanical processes and the thermal state of the PMSM. The study has solved the problem of no specialized engineering design techniques of the winch drive PMSM. The technique can be used by electromechanical engineers in solving the problem of designing winch drive PMSM as it allows making a design project of the PMSM corresponding to the requirements of the technical specifications and operation feature.

2020 ◽  
Vol 56 (3) ◽  
pp. 2462-2471
Author(s):  
Daniel Fernandez ◽  
Maria Martinez ◽  
David Reigosa ◽  
Juan M. Guerrero ◽  
Carlos Manuel Suarez Alvarez ◽  
...  

2018 ◽  
pp. 40-48
Author(s):  
Anatolii M. RUSAKOV ◽  
◽  
Eugene O. KAZIMIROV ◽  
Vitaliy A. SHATOV ◽  
Irina V. SHATOVA ◽  
...  

Author(s):  
Stephen R. Swantner ◽  
James D. Andrachek

Plant Technical Specifications are issued by the US NRC to ensure that safe nuclear power plant operation is maintained within the assumptions for parameters and Structures, Systems, and Components (SSCs) made in the plant safety analysis reports. The Technical Specifications are made up of Limiting Conditions for Operation (LCOs), which are the minimum set of requirements that must be met based on the assumptions of the safety analysis, Actions, which are the remedial or compensatory actions that must be taken if the LCO is not met, and Surveillance Requirements, that demonstrate that the LCO is met. The Technical Specification Actions contain Completion Times (CTs) which are the time within which remedial actions must be taken, in the event that the LCO is not met. The Improved Standard Technical Specifications (ISTS) for Westinghouse plants are contained in NUREG-1431, Revision 2. Condition A of Technical Specification 3.5.2 (ECCS- Operating) in NUREG-1431, Revision 2, allows components to be taken out of service for up to 72 hours, as long as 100% of the ECCS flow equivalent to a single Operable ECCS train exists. Condition A would allow, for example, the A train low head safety injection (LHSI) and the B train high head safety injection (HHSI) pumps to be taken out of service (for 72 hours) as long as it could be demonstrated that the remaining components could provide 100% train equivalent flow capacity. The “cross-training” allowed by this Condition in the ISTS provides flexibility when performing routine pre-planned preventive maintenance and testing, as well as during emergent corrective maintenance and testing associated with random component inoperabilities. Without this flexibility, a unit would have to initiate a plant shutdown within 1 hour, if component(s) were inoperable in different trains. In order to implement this flexibility, the various combinations of components in opposite trains must be evaluated to determine whether 100% of the ECCS flow equivalent to a single Operable ECCS train exists with those components out of service. This evaluation ensures that the safety analysis assumption associated with one train of emergency core cooling system (ECCS) is still preserved by various combinations of components in opposite trains. An ECCS train is inoperable if it is not capable of delivering design flow to the reactor coolant system (RCS). Individual components are inoperable of they are not capable of performing their design function, or support systems are not available. Due to the redundancy of trains and the diversity of subsystems, the inoperability of one component in a train does render the ECCS incapable of performing its function. Neither does the inoperability of two different components, each in a different train, necessarily result in a loss of function for the ECCS. The intent of Condition A is to maintain a combination of components such that 100% of the ECCS flow equivalent to a single Operable ECCS train remains available. This allows increased flexibility in plant operations under circumstances when components in the required subsystem may be inoperable, but the ECCS remains capable of delivering 100% of the required flow equivalent. This paper presents a methodology for identifying the minimum set of components necessary for 100% of the ECCS flow equivalent to a single Operable ECCS train. An example of the implementation of this methodology is provided for a typical Westinghouse 3-loop ECCS design.


2019 ◽  
Vol 2019 (17) ◽  
pp. 4060-4064
Author(s):  
Sergio Zarate ◽  
Gaizka Almandoz ◽  
Gaizka Ugalde ◽  
Javier Poza ◽  
Ana Julia Escalada

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 592
Author(s):  
Maria Martinez ◽  
David Reigosa ◽  
Daniel Fernandez ◽  
Fernando Briz

Torque estimation in permanent magnet synchronous machines and synchronous reluctance machines is required in many applications. Torque produced by a permanent magnet synchronous machine depends on the permanent magnets’ flux and d q -axes inductances, whereas torque in synchronous reluctance machines depends on the d q -axes inductances. Consequently, precise knowledge of these parameters is required for proper torque estimation. The use of high frequency signal both for permanent magnets’ flux and d q -axes inductances estimation has been recently shown to be a viable option. This paper reviews the physical principles, implementation and performance of high-frequency signal injection based torque estimation for permanent magnet synchronous machines and synchronous reluctance machines.


Sign in / Sign up

Export Citation Format

Share Document