EFFECTS OF DEFICIT IRRIGATION USING SALINE WATER ON 'CHENOPODIUM QUINOA WILLD.' GROWN IN A MEDITERRANEAN ENVIRONMENT

2011 ◽  
pp. 49-53 ◽  
Author(s):  
C. Pulvento ◽  
M. Riccardi ◽  
A. Lavini ◽  
R. d'Andria
2015 ◽  
Vol 66 (10) ◽  
pp. 993 ◽  
Author(s):  
Attila Yazar ◽  
Çigdem Incekaya ◽  
S. Metin Sezen ◽  
Sven-Erik Jacobsen

Field experiments were set up in order to evaluate the yield response of quinoa (Chenopodium quinoa Willd. cv. Titicaca) to irrigation with saline and fresh water under Mediterranean climate from 2010 to 2012 in Adana, Turkey. Irrigation treatments in 2010 and 2011 comprised full irrigation with fresh water, full irrigation with saline water of different salt concentrations (40, 30, 20, 10 dS m–1), deficit irrigations with fresh water (50%, 75% of full irrigation), partial root-zone drying, and deficit irrigation with saline water of 40 dS m–1 (50%). In 2012, in addition to the full irrigation treatments, two deficit irrigation levels of 67% and 33% of full irrigation with fresh or saline (30, 20, 10 dS m–1) water were considered. The results indicated that grain yields were slightly reduced by irrigation water salinity up to 30 dS m–1 compared with fresh water irrigation. Salinity and drought stress together interfered considerably with crop grain and biomass yields. However, salinity stress alone did not interfere with grain and biomass yield significantly; therefore, quinoa may be defined as a crop tolerant to salinity. Yield parameters such as aboveground biomass, seed yield and harvest index suggested a good adaptation of quinoa cv. Titicaca to Mediterranean environments.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 796
Author(s):  
Mohamed A. Mattar ◽  
Said S. Soliman ◽  
Rashid S. Al-Obeed

A field experiment was conducted on date palm trees (Phoenix dactylifera ‘Succary’) cultivated on sandy loam soil from 2017 to 2018. This study investigated the effects of providing water of three different qualities, namely freshwater (FR) and two saline water sources: reclaimed wastewater (RW) and well-water (WE) applied through three irrigation levels representing 50% (I50), 100% (I100), and 150% (I150) of crop evapotranspiration (ETc), on the soil water and salt distribution patterns, yield, water productivity (WP), and fruit quality of the ′Succary′ date palm. The electrical conductivity (ECw) of FR, RW, and WE were 0.18, 2.06, and 3.94 dS m−1, respectively. Results showed that WE applied by the I150 treatment had the highest soil water content, followed by RW used in the I100 irrigation level and FR with I50, whereas the soil salt content was high for WE applied in the I50 level and low for FR applied by the I150 treatment. Deficit irrigation (I50) of date palms with either RW or WE reduced date yields on average 86 kg per tree, whereas the yield increased under over-irrigation (I150) with FR to 123.25 kg per tree. High WP values were observed in the I50 treatments with FR, RW, or WE (on average 1.82, 1.68, and 1.67 kg m−3, respectively), whereas the I150 treatment with each of the three water types showed the lowest WP values. Fruit weight and size were the lowest in the full irrigation (I100) with WE, whereas the I150 treatment with RW showed the highest values. There were no significant differences in either total soluble solids (TSS) or acidity values when the irrigation level decreased from 100% to 50% ETc. Compared with both I50 and I100 treatments, reduced values of both TSS and acidity were observed in the I150 treatment when ECw decreased from 3.94 to 0.18 dS m−1,. Fruit moisture content decreased with the application of saline irrigation water (i.e., RW or WE). Total sugar and non-reducing sugar contents in fruits were found to be decreased in the combination of RW and I150, whereas the 50% ETc irrigation level caused an increment in both parameters. These results suggest that the application of deficit irrigation to date palm trees grown in arid regions, either with FR or without it, can sufficiently maximize WP and improve the quality of fruits but negatively affects yield, especially when saline water is applied. The use of saline water for irrigation may negatively affect plants because of salt accumulation in the soil in the long run.


2011 ◽  
Vol 98 (4) ◽  
pp. 597-605 ◽  
Author(s):  
Mustafa Ünlü ◽  
Rıza Kanber ◽  
D. Levent Koç ◽  
Servet Tekin ◽  
Burçak Kapur

2008 ◽  
Vol 28 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Sam Geerts ◽  
Dirk Raes ◽  
Magali Garcia ◽  
Jean Vacher ◽  
Richard Mamani ◽  
...  

2008 ◽  
Vol 95 (8) ◽  
pp. 909-917 ◽  
Author(s):  
Sam Geerts ◽  
Dirk Raes ◽  
Magali Garcia ◽  
Octavio Condori ◽  
Judith Mamani ◽  
...  

1991 ◽  
Vol 116 (2) ◽  
pp. 215-221 ◽  
Author(s):  
J.P. Mitchell ◽  
C. Shennan ◽  
S.R. Grattan ◽  
D.M. May

Effects of deficit irrigation and irrigation with saline drainage water on processing tomato (Lycopersicon esculentum Mill, cv. UC82B) yields, fruit quality, and fruit tissue constituents were investigated in two field experiments. Deficit irrigation reduced fruit water accumulation and fresh fruit yield, but increased fruit soluble solids levels and' led to higher concentrations of hexoses, citric acid, and potassium. Irrigation with saline water had no effect on total fresh fruit yield or hexose concentration, but slightly reduced fruit water content, which contributed to increased inorganic ion concentrations. Fruit set and marketable soluble solids (marketable red fruit yield × percent soluble solids) were generally unaffected by either irrigation practice. Water deficit and salinity increased starch concentration during early fruit development, but, at maturity, concentrations were reduced to < 1%, regardless of treatment. Higher fruit acid concentrations resulted from water deficit irrigation and from irrigation with saline water relative to the control in one year out of two. These results support the contention that deficit irrigation and irrigation with saline drainage water may be feasible crop water management options for producing high quality field-grown processing tomatoes without major yield reductions. Appropriate long-term strategies are needed to deal with the potential hazards of periodic increases in soil salinity associated with use of saline drainage water for irrigation.


Sign in / Sign up

Export Citation Format

Share Document