Effect of three training systems on the growth and fruiting of ‘Fuji’/M.9 apple trees on a replanted site in Korea

2017 ◽  
pp. 133-138
Author(s):  
Y.K. Kim ◽  
J.I. Kim ◽  
D.H. Park ◽  
M.Y. Park ◽  
K.Y. Shon
Keyword(s):  
1994 ◽  
Vol 119 (6) ◽  
pp. 1114-1120 ◽  
Author(s):  
D.L. Peterson ◽  
S.S. Miller ◽  
J.D. Whitney

Three years of mechanical harvesting (shake and catch) trials with two freestanding apple (Malus domestica Borkh.) cultivars on a semidwarf rootstock (M.7a) and two training systems (central leader and open center) yielded 64% to 77% overall harvesting efficiency. Mechanically harvested `Bisbee Delicious' apples averaged 70% Extra Fancy and 10% Fancy grade, while two `Golden Delicious' strains (`Smoothee' and `Frazier Goldspur') averaged 40% Extra Fancy and 13% Fancy grade fruit. Mechanically harvesting fresh-market-quality apples from semidwarf freestanding trees was difficult and its potential limited. Cumulative yield of open-center trees was less than that of central-leader trees during the 3 years (sixth through eighth leaf) of our study. `Golden Delicious' trees generally produced higher yields than `Delicious' trees.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 437C-437
Author(s):  
Stephen S. Miller ◽  
George M. Greene

In many years, apples grown in the mid-Atlantic region fail to exhibit a high percentage of the dark red color that buyers and consumers desire. In 1996, we initiated studies to examine the use of a metalized silver low-density polyethylene reflective groundcover (RGC) to improve red color on several apple cultivars under several training systems. A RGC placed in the orchard drive middle of 8-year-old `Delicious' apple trees trained to a “Y” trellis increased the percent surface red color and resulted in darker, more red-colored apples at harvest. A RGC increased surface red color on `Empire' apples on a “Y” trellis, but on central leader-trained semi-dwarf and standard size `Empire' showed no effects on color. Central leader-trained `Fuji'/EMLA.7 apples with a RGC had more red color than untreated fruit at harvest. In 1997, RGC placed under the canopy of 3-year-old `Fuji' trees trained to a “Y” trellis increased the full sunlight on the underside of the canopy by 28%. Ambient air temperatures within the RGC illuminated canopy averaged 2.1 °C higher than the non-RGC canopy. The level of percent full sunlight was increased within the canopy of well-pruned 32-year-old `Miller Spur Delicious' apple trees 4- to 8-fold with RGC placed in the row middle or under the canopy in a commercial orchard in 1998. Position of the RGC to the canopy affected fruit red color response differently between the lower and upper part of the canopy. Bins of fruit graded with a commercial color sorter showed no difference in fruit color; however, there was a strong trend toward increased red color where the RGC material was applied.


HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1538-1550
Author(s):  
Gemma Reig ◽  
Jaume Lordan ◽  
Stephen Hoying ◽  
Michael Fargione ◽  
Daniel J. Donahue ◽  
...  

We conducted a large (0.8 ha) field experiment of system × rootstock, using Super Chief Delicious apple as cultivar at Yonder farm in Hudson, NY, between 2007 and 2017. In this study, we compared six Geneva® rootstocks (‘G.11’, ‘G.16’, ‘G.210’, ‘G.30’, ‘G.41’, and ‘G.935’) with one Budagovsky (‘B.118’) and three Malling rootstocks (‘M.7EMLA’, ‘M.9T337’ and ‘M.26EMLA’). Trees on each rootstock were trained to four high-density systems: Super Spindle (SS) (5382 apple trees/ha), Tall Spindle (TS) (3262 apple trees/ha), Triple Axis Spindle (TAS) (2243 apple trees/ha), and Vertical Axis (VA) (1656 apple trees/ha). Rootstock and training system interacted to influence growth, production, and fruit quality. When comparing systems, SS trees were the least vigorous but much more productive on a per hectare basis. Among the rootstocks we evaluated, ‘B.118’ had the largest trunk cross-sectional area (TCSA), followed by ‘G.30’ and ‘M.7EMLA’, which were similar in size but they did not differ statistically from ‘G.935’. ‘M.9T337’ was the smallest and was significantly smaller than most of the other rootstocks but it did not differ statistically from ‘G.11’, ‘G.16’, ‘G.210’, ‘G.41’, and ‘M.26EMLA’. Although ‘B.118’ trees were the largest, they had low productivity, whereas the second largest rootstock ‘G.30’ was the most productive on a per hectare basis. ‘M.9’ was the smallest rootstock and failed to adequately fill the space in all systems except the SS, and had low cumulative yield. The highest values for cumulative yield efficiency (CYE) were with ‘G.210’ for all training systems except for VA, where ‘M.9T337’ had the highest value. The lowest values were for all training systems with ‘B.118’ and ‘M.7EMLA’. Regardless of the training system, ‘M.7EMLA’ trees had the highest number of root suckers. Some fruit quality traits were affected by training system, rootstock or system × rootstock combination.


2019 ◽  
Vol 29 (1) ◽  
pp. 46-49 ◽  
Author(s):  
James R. Schupp ◽  
H. Edwin Winzeler ◽  
Melanie A. Schupp

Renewal of limbs by pruning to leave a short, angled, upward-facing stub is common practice for spindle-type apple (Malus ×domestica) training systems. A short, beveled stub cut is thought to stimulate renewal growth from latent buds present underneath the base of the excised branch, and to stimulate smaller, more fruitful renewal limbs with wide crotch angles. We conducted trials over the course of 2 years that involved dormant pruning of ‘Buckeye Gala’ with renewal cuts to compare two stub lengths, 0.5 and 2 cm, and three stub orientations, upward facing, downward facing, and vertical facing, to determine the effects on renewal shoot number, position, angle, and length. We found no clear advantages with either stub length that we evaluated, and there was no improvement in renewal shoot quality with a bevel cut at any orientation. Stub length and stub angle did not influence limb renewal and may be unimportant for training orchard-pruning crews and for machine-learning and robotic pruning.


2017 ◽  
pp. 139-144
Author(s):  
H.W. Jung ◽  
J.I. Kim ◽  
D.H. Park ◽  
Y.K. Kim ◽  
K.Y. Shon ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document