METHOD OF SELECTION AND CALCULATION DEVICES AIR CLEANING FROM CONDENSED AEROSOLS

2016 ◽  
Vol 6 (2) ◽  
pp. 14-18
Author(s):  
Denis N. VATUZOV ◽  
Svetlana M. PURING

This article defines the options to improve the efficiency of local exhaust ventilation systems by incorporating into the circuit from the air cleaning devices droplet aerosol. Schemes connecting cleaning apparatus in ventilation management system are worked out. In the first embodiment, the placement aerozoleulovitelya purified ventilation air is discharged directly to the atmosphere, in the second embodiment, the cleaned air is used in the recovery system, which is removed after the street. The feasibility of using the heat exchanger in the scheme is justified by comparing the technical and economic options and the need to improve energy efficiency. The method of selection and calculation of air cleaning devices from droplet sprays, on the basis of which it is possible to determine the design parameters of the system, to evaluate the amount of captured material, and choose the most appropriate in each case unit, focusing on the desired performance of the ventilation system, the necessary degree of purification and the area for mounting the device.

2017 ◽  
Vol 7 (3) ◽  
pp. 19-23
Author(s):  
Svetlana M. PURING ◽  
Denis N. VATUZOV ◽  
Gennady I. TITOV

Functioning of industrial buildings is impossible without correctly organized ventilation system. Its work both regulates heat moist mode and the required indoor air purity that is cleaned with the help of air cleaning equipment. To make decision to construct the required air cleaning equipment at the enterprise it is worthwhile to give additional parameters and to solve a problem of multicriteria optimization to get the best results. The choice of the best variant is supposed to be carried out using Harrington’s desirability function. The conducted multicriteria analysis allowed to reveal optimum characteristics of air cleaning equipment, based on the required purifi cation air degree, the geometrical sizes of the equipment and aerodynamic resistance while introducing any particular device.


2016 ◽  
Vol 100 ◽  
pp. 10-18 ◽  
Author(s):  
Mariya P. Bivolarova ◽  
Arsen K. Melikov ◽  
Chiyomi Mizutani ◽  
Kanji Kajiwara ◽  
Zhecho D. Bolashikov

Solar Energy ◽  
2005 ◽  
Author(s):  
D. Dong ◽  
M. Liu

Investigations of a desiccant dehumidifier system have been performed for humidity control application in confined spaces. A previous study revealed that the base dehumidifier system can reduce moisture condensation by 22% over a conventional exhaust ventilation system. The current study aims to develop improved design requirements for a desiccant dehumidifier. The energy consumption of an exhaust ventilation system and an improved dehumidifier system was compared. To investigate the improved desiccant dehumidification system, numerical simulations were conducted and an objective function was established. This paper presents simulated results for an existing desiccant dehumidification system and an improved system, in which improved parameters are used. Use of the improved design parameters can reduce moisture condensation by 26.6% over a base dehumidifier system and shorten the dehumidifier performance period by 14%. Energy consumption with the sole use of an exhaust system is compared with that of the improved dehumidifier system under the same conditions. The results show that energy consumption can be substantially reduced, by 63%, in the improved dehumidifier system with the same amount of moisture condensation on surfaces of the confined space.


2020 ◽  
Vol 33 (2) ◽  
pp. 310-315 ◽  
Author(s):  
Tee Lin ◽  
Omid Ali Zargar ◽  
Oscar Juina ◽  
Tzu-Chieh Lee ◽  
Dexter Lyndon Sabusap ◽  
...  

2013 ◽  
Vol 315 ◽  
pp. 997-1001 ◽  
Author(s):  
Ng Chee Seng ◽  
Abdul Mutalib Leman ◽  
Azmahani Sadikin

LEV is a ventilation system that collects and sucks out particles such as dusts, mists, gases, vapors or fumes out of work station, so that they can’t be breathed in by occupants. There is a lot of LEV allocated and installed in order to help protecting occupants’ health but it doesn’t work properly. To overcome this issue, computational fluid dynamics (CFD) will be implemented. Past studies CFD techniques represent a very significant improvement of air ventilation systems. However, CFD is just a tool in prediction model, which can lead to inaccuracy of predicting airflow due to problems with pre-processing, solver and post-processing with parameter from actual experimental results. As of yet, it is not possible to 100% accurately simulate airflow around a body. These codes are simply models which are close to that of a real flow, but not an exact match. All of these require validation to help minimizing percentage error in CFD methodology. Several strategies are needed to boost effectiveness of LEV in terms of predicting airflow in a geometry model. The outcome of this research can be used as a benchmark or guideline for industries to help improving indoor air quality (IAQ).


2020 ◽  
Vol 224 ◽  
pp. 03026
Author(s):  
Tatyana Zhilkina ◽  
Viktor Pukhkal ◽  
Vladislav Pankov

Local exhaust ventilation allows maximizing the localization of hazards with minimum values of air exchange in the room. For the study, the design of a local exhaust in the form of an air-jet hood at an open doorway of the UKM Classic M 2005 chamber by Mauting was adopted. Geometric models have been developed, including a heat treatment chamber, a room from which the chamber is loaded, a supply and exhaust hood over the door from the chamber to the room, and a supply air duct with air distributing devices. The results of a computational experiment on modeling the operation of the local exhaust ventilation system of the heat treatment chamber are presented. The STAR-CCM+ software package was used as a calculation program. The calculation results were analyzed. The influence of the air exchange scheme (location of the supply devices) in the room on the efficiency of the local exhaust devices (supply and exhaust hood) has been established.


Sign in / Sign up

Export Citation Format

Share Document