scholarly journals Protection of steel with a superhydrophobic coating against atmospheric corrosion in conditions of livestock buildings

2021 ◽  
pp. 101537
Author(s):  
Han Zhang ◽  
Wen Sun ◽  
Lida Wang ◽  
Jing Wang ◽  
Suilin Wang ◽  
...  

2020 ◽  
Vol 25 (3) ◽  

100% humidity and the presence in the air of such corrosion stimulants as CO2, NH3 and H2S are characteristic of livestock buildings. Under these conditions, a surface phase film of moisture is formed on the surface of the metals in which the indicated micro-mixtures of air are dissolved and hydrated almost completely with the formation of NH4OH and acids H2CO3 and H2S. The potentiodynamic polarization method was used to study the corrosion and kinetics of electrode processes on steel with a superhydrophobic coating in a NaCl background solution (used to provide sufficient electrical conductivity) saturated in pairs with CO2 and NH3, NH3 and H2S. Similar studies were conducted with uncoated electrodes. Superhydrophobic coating was obtained on the basis of laser texturing of the surface with subsequent hydrophobization with fluoroxysilane (wetting angle 165±2°, rolling angle 3±1°). The influence of the duration of the exposure of the electrodes in solution (0,25…168 h) on the kinetics of electrode processes and the corrosion rate of steel is considered. In the presence of CO2 and NH3 dissolution products, the corrosion rate of an electrode with a superhydrophobic coating on the second and third days of exposure is about an order of magnitude, and on the fourth and seventh days it is more than an order of magnitude lower than without coating. During the entire time the electrodes are in solution, the anode process on the superhydrophobic electrode is inhibited compared to an unprotected electrode. The medium containing the dissolution products of NH3 and H2S is more aggressive than the previous solution. Therefore, the corrosion rate of the electrodes without coating and with a coating here is higher than in the latter one. The corrosion rate of electrodes with superhydrophobic coating in the study period is only 1,5…2,5 times lower than that of uncoated electrodes. During the first day of exposure, the anode process is inhibited, and in the next 144 hours, on the contrary, it is facilitated in comparison with an unprotected electrode. Taking into account the corrosivity of the chloride solution, the possible effect of the dissolution products of aggressive air micro-impurities in the absence of background salt was analyzed.


Author(s):  
A.M. Semiletov ◽  
◽  
Yu.B. Makarychev ◽  
A.A. Chirkunov ◽  
L.P. Kazansky ◽  
...  

The application of mixed corrosion inhibitor (CI), which is an equimolar composition of oleoyl sarcosinate (SOS) and sodium flufenamate (SFF), for protection of D16 aluminum alloy from atmospheric corrosion has been studied. The polarization measurements used to assess the effectiveness of preliminary passivation of the alloy with solutions of SOS, SFF and their composition showed significant advantages of mixed CI. The XPS method was used to study features of CI adsorption on the surface of D16 alloy. It has been established that upon adsorption of SOS and SFF separately a monolayer is formed, firmly bonded to the alloy surface, thickness of which is not exceeding 2.6—3.2 nm. After the joint adsorption of these CI, the layer thickness reaches 12—20 nm. The composition of this layer includes a considerable amount of Al3+ ions (~20%) related to their compounds with SFF and SOS, as well as to aluminum hydroxides. A possible mechanism for the formation of such a protective layer is proposed. The results of corrosion tests in a humid atmosphere with daily water condensation on samples of D16 alloy confirmed the high protective ability of the mixed CI film.


Author(s):  
V. I. Vigdorovich ◽  
◽  
L. Ye. Tsygankova ◽  
A. V. Dorokhov ◽  
M. V. Vigdorovich ◽  
...  

Alloy Digest ◽  
2013 ◽  
Vol 62 (3) ◽  

Abstract AK Steel Nitronic 30 has good wet abrasion resistance, good resistance to aqueous and atmospheric corrosion, high strength, economy, and improved stress-corrosion cracking resistance over common 18-8 stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming and joining. Filing Code: SS-1138. Producer or source: AK Steel Corporation.


Alloy Digest ◽  
1972 ◽  
Vol 21 (11) ◽  

Abstract USS COR-TEN A, the original COR-TEN Steel composition (see U.S.S. COR-TEN, Alloy Digest SA-17, April 1954), has 5 to 8 times the atmospheric corrosion resistance of structural carbon steel and a minimum yield point of 50,000 psi in sections through 1/2-inch thick. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-283. Producer or source: United States Steel Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (5) ◽  

Abstract AK Steel Type 304 is a chromium-nickel austenitic stainless steel. It is a variation of the base 18-8 grade, but with higher chromium and lower carbon content. The lower carbon content minimizes carbide precipitation due to welding and reduces its susceptibility to intergranular corrosion. Type 304 is the most versatile and widely used stainless steel grade. It combines good resistance to atmospheric corrosion and to many chemicals, food, and beverages. It has excellent formability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-1317. Producer or source: AK Steel Corporation. Originally published April 2020, corrected May 2020.


Alloy Digest ◽  
1957 ◽  
Vol 6 (4) ◽  

Abstract DYNALLOY is a versatile low-alloy, high-strength, flat rolled steel which combines high physical properties with ductility and weldability. It has higher atmospheric corrosion resistance, and also higher resistance to abrasion, impact and fatigue than plain carbon steels. This datasheet provides information on composition, tensile properties, and bend strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-56. Producer or source: Alan Wood Steel Company.


Sign in / Sign up

Export Citation Format

Share Document