A. Wegener - O. Ampferer - R. Schwinner: The First Chapter of the "New Globale Tectonic"

1984 ◽  
Vol 3 (2) ◽  
pp. 178-186 ◽  
Author(s):  
Helmut Fiügel

Between 1906-1948, Wegener, Ampferer, and Schwinner worked out many tectonic concepts which are today parts of the New Globale Tectonic, including the idea of convection currents, the origin ofthe Middle Atlantic Ridge in connection with sea-floor spreading, the concept of the "Benioff-Zone", the subduction of parts of the Pacific plate under the continents, and the linkage of these features with volcanism. Many of these ideas were soon forgotten and had to be "rediscovered" once again.

1971 ◽  
Vol 8 (9) ◽  
pp. 1056-1064 ◽  
Author(s):  
C. E. Keen ◽  
D. L. Barrett

A seismic refraction experiment was conducted in the Pacific Ocean basin, off the coast of British Columbia, Canada. The purpose of these measurements was to obtain an estimate of the anisotropy of the mantle P-wave velocity in the area and to relate this parameter to the direction of sea floor spreading. The results show that the crustal structure is similar to that measured elsewhere in the Pacific basin. Significant anisotropy of the mantle rocks is observed; the direction in which the maximum velocity occurs being 107° and the change of velocity, about 8% of the mean value, 8.07 km/s. The direction of maximum velocity does not coincide exactly with the direction of sea floor spreading, 090°, inferred from magnetic lineations.


2021 ◽  
Author(s):  
Gillian Foulger ◽  
Laurent Gernigon ◽  
Laurent Geoffroy

<p>The NE Atlantic formed by complex, piecemeal breakup of Pangea in an environment of structural complexity. North of the present-day latitude of Iceland the ocean opened by southward propagation of the Aegir ridge. South of the present-day latitude of Iceland breakup occurred along the proto-Reykjanes ridge which formed laterally offset by ~ 100 km from the Aegir ridge to the north. Neither of these new breakup axes were able to propagate across the east-westerly striking Caledonian frontal thrust region which formed a strong barrier ~ 400 km wide. As a result, while sea-floor spreading widened the NE Atlantic, the Caledonian front region could only keep pace by diffuse stretching of the continental crust, which formed the aseismic Greenland-Iceland-Faroe ridge. The magmatic rate there was similar to that of the ridges to the north and south and so the stretched continental crust is now blanketed by thick mafic flows and intrusions. The NE Atlantic also contains a magma-inflated microcontinent – the Jan Mayen Microplate Complex, and an unknown but probably large amount of stretched continental crust blanketed by seaward-dipping reflectors in the passive margins of Norway and Greenland. The NE Atlantic thus contains voluminous continental crust in diverse forms and settings. If even a small portion of the sunken continental material contiguous with the Greenland-Iceland-Faroe ridge is included the area exceeds a million square kilometers, an arbitrary threshold suggested to designate a sunken continent. We have called this region Icelandia. The conditions and processes that funneled large quantities of continental crust into the NE Atlantic ocean are common elsewhere. This includes much of the North and South Atlantic oceans including both the seaboards and the deep oceans. Nor are such processes and outcomes confined to oceans bordered by passive margins. They are also found around the Pacific rims where subduction is in progress. Indeed, these conditions and processes likely are generic to essentially all the world's oceans and are potentially also informed by observations from intracontinental extensional regions and land-locked seas.</p>


Author(s):  
Roy Livermore

The magnetic bar-code on the ocean floor provides convincing evidence of moving continents, yet, as with the discovery of the structure of DNA, few are convinced—at first. Drilling in the deep oceans and geochemical work at mid-ocean ridges provides further evidence in support of the Vine–Matthews Hypothesis. Application of the hypothesis to data collected in the Pacific and Atlantic Oceans establishes sea-floor spreading as the process that creates new oceans and, in conjunction with reversals of the geomagnetic field, stamps the bar-code into the rocks beneath the sea bed.


1985 ◽  
Vol 4 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Gareth Nelson

According to Croizat's global synthesis, the main biogeographic patterns include trans-Atlantic, trans-Pacific, trans-Indoceanic, Boreal, and Austral. Geological and geophysical theories vary, but agree that sea-floor spreading in the Pacific is different in its effect from that in other ocean basins. The difference allows for radial expansion of the basin and not merely east-west displacement of continental areas. Biogeographic data suggest that bipolar (boreal + austral) distributions are to be reckoned among the results of sea-floor spreading in the Pacific. Data from one group of inshore fishes (family Engraulidae) exemplify this notion and add, as terminal parts of the differentiation of the Pacific Basin, trans-Panama marine vicariance and a collateral occurrence in freshwater of tropical South America. These findings corroborate Croizat's synthesis. They suggest that the critical evaluation of that synthesis will be the main task of biogeography over the next decade. They indicate that within the area of systematics, evaluation will require a cladistic approach and the elimination of paraphyletic groups from classification.


1968 ◽  
Vol 73 (6) ◽  
pp. 2069-2085 ◽  
Author(s):  
W. C. Pitman ◽  
E. M. Herron ◽  
J. R. Heirtzler

Author(s):  
EDWARD D. GOLDBERG ◽  
ROBERT H. PARKER
Keyword(s):  

1976 ◽  
Vol 13 (3) ◽  
pp. 212-217 ◽  
Author(s):  
Han-Shou Liu ◽  
Edward S. Chang ◽  
George H. Wyatt

Sign in / Sign up

Export Citation Format

Share Document