Effect of T6 Heat Treatment on Mechanical Properties and Microstructures of Cast Al-Si-Sn-Fe-Cu

Author(s):  
Fuad Adnan ◽  
◽  
Haris Rudianto ◽  
Hery Sulistyo ◽  
Deny Haryadi
2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2065
Author(s):  
Fei Liu ◽  
Haidong Zhao ◽  
Runsheng Yang ◽  
Fengzhen Sun

Al–Si–Mg based alloys can provide high strength and ductility to satisfy the increasing demands of thin wall castings for automotive applications. This study has investigated the effects of T6 heat-treatment on the microstructures, the local mechanical properties of alloy phases and the fracture behavior of high vacuum die-cast AlSiMgMn alloys using in-situ scanning electron microscopy (SEM) in combination with nano-indentation testing. The microstructures of the alloys at as-cast and T6 treated conditions were compared and analyzed. It is found that the T6 heat treatment plays different roles in affecting the hardness and the Young’s modulus of alloy phases. This study also found that the T6 heat treatment would influence the failure modes of the alloys. The mechanisms of crack propagation in the as-cast and T6 treated alloys were also analyzed and discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2131
Author(s):  
Bo-Chin Huang ◽  
Fei-Yi Hung

This study investigated the microstructure, mechanical properties, impact toughness, and erosion characteristics of Al-10Si-Mg alloy specimens manufactured using the selective laser melting (SLM) method with or without subsequent T6 heat treatment. Furthermore, the erosion phase transformation behavior of the test specimens was analyzed, and the effect of the degradation mechanism on the tensile mechanical properties and impact toughness of the SLM Al-10Si-Mg alloy specimens before and after particle erosion was compared. The experimental results indicated that the Al-10Si-Mg alloy subjected to T6 heat treatment has better erosion resistance than the as-fabricated material. The tensile strength and fracture toughness of both specimen groups decreased due to the formation of microcracks on the surface caused by particle erosion. Nevertheless, the erosion-induced silicon nanoparticle solid solution softens the Al matrix and improves the elongation of the SLM Al-10Si-Mg alloy.


2019 ◽  
Vol 135 (4) ◽  
pp. 732-734
Author(s):  
I. Simsek ◽  
D. Simsek ◽  
T. Tuncay ◽  
D. Ozyurek

Sign in / Sign up

Export Citation Format

Share Document