scholarly journals Mitochondria of transformed cell as a target of antitumor influence

2020 ◽  
Vol 7 (2) ◽  
pp. 92-108
Author(s):  
E. M. Frantsiyants ◽  
I. V. Neskubina ◽  
E. A. Sheiko

Mitochondria are intracellular organelles in eukaryotic cells that participate in bioenergy metabolism and cell homeostasis, including ATP generation through electron transport and oxidative phosphorylation in combination with oxidation of metabolites by the tricarboxylic acid cycle and fatty acid catabolism via β-oxidation. the production of reactive oxygen species, as well as the initiation and implementation of apoptosis. Mitochondria play a crucial role in cellular energy metabolism and the regulation of programmed cell death. mitochondria activate numerous signaling pathways associated with cell death. Mitochondria have the ability to control the activation of programmed cell death by regulating the translocation of proapoptotic proteins from the intermediate space of mitochondria to the cytosol. This is the reason for the emergence of a new discipline — mitochondrial medicine. The review examined and analyzed scientific publications on the role of mitochondria in the life support of transformed cells, the study of their functioning and structurally functional dysfunctions, as part of mitochondrial medicine. Mitochondrial medicine is a developing discipline whose significance stems from the central function of mitochondria in the production of adenosine triphosphate, the generation of reactive oxygen species, and cell death due to necrosis or apoptosis. Consequently, mitochondrial dysfunction plays an important role in the pathophysiology of cancer, many other common diseases and side effects of drugs. Perhaps the combined use of modulators of mitochondrial metabolism and antitumor therapy will contribute to the emergence of a new direction in antitumor treatment, which will significantly increase the effectiveness of cancer treatment.

2015 ◽  
Vol 66 (10) ◽  
pp. 2869-2876 ◽  
Author(s):  
Irene Serrano ◽  
María C. Romero-Puertas ◽  
Luisa M. Sandalio ◽  
Adela Olmedilla

2021 ◽  
Vol 22 (23) ◽  
pp. 12942
Author(s):  
Chanjuan Ye ◽  
Shaoyan Zheng ◽  
Dagang Jiang ◽  
Jingqin Lu ◽  
Zongna Huang ◽  
...  

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208802 ◽  
Author(s):  
Fabrizio Araniti ◽  
Aitana Costas-Gil ◽  
Luz Cabeiras-Freijanes ◽  
Antonio Lupini ◽  
Francesco Sunseri ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Liselot Dewachter ◽  
Pauline Herpels ◽  
Natalie Verstraeten ◽  
Maarten Fauvart ◽  
Jan Michiels

Sign in / Sign up

Export Citation Format

Share Document