scholarly journals Transmuted Modified Inverse Rayleigh Distribution

2015 ◽  
Vol 44 (3) ◽  
pp. 17-29 ◽  
Author(s):  
Muhammad Shuaib Khan ◽  
Robert King

We introduce the transmuted modified Inverse Rayleighdistribution by using quadratic rank transmutation map (QRTM), whichextends the modified Inverse Rayleigh distribution. A comprehensiveaccount of the mathematical properties of the transmuted modified InverseRayleigh distribution are discussed. We derive the quantile, moments,moment generating function, entropy, mean deviation, Bonferroni andLorenz curves, order statistics and maximum likelihood estimation Theusefulness of the new model is illustrated using real lifetime data.

Author(s):  
Aliyeh Toumaj ◽  
S.M.T.K. MirMostafaee ◽  
G.G. Hamedani

In this paper, we propose a new lifetime distribution. We discuss several mathematical properties of the new distribu- tion. Certain characterizations of the new distribution are provided. We study the maximum likelihood estimation and asymptotic interval estimation of the unknown parameters. A simulation study, as well as an application of the new distribution to failure data, are also presented. We end the paper with a number of remarks.


Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


Author(s):  
Muhammad Mansoor ◽  
M. H. Tahir ◽  
Aymaan Alzaatreh ◽  
Gauss M. Cordeiro

A new three-parameter compounded extended-exponential distribution “Poisson Nadarajah–Haghighi” is introduced and studied, which is quite flexible and can be used effectively in modeling survival data. It can have increasing, decreasing, upside-down bathtub and bathtub-shaped failure rate. A comprehensive account of the mathematical properties of the model is presented. We discuss maximum likelihood estimation for complete and censored data. The suitability of the maximum likelihood method to estimate its parameters is assessed by a Monte Carlo simulation study. Four empirical illustrations of the new model are presented to real data and the results are quite satisfactory.


1999 ◽  
Vol 11 (7) ◽  
pp. 1739-1768 ◽  
Author(s):  
Aapo Hyvärinen

Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this article, we show how sparse coding can be used for denoising. Using maximum likelihood estimation of nongaussian variables corrupted by gaussian noise, we show how to apply a soft-thresholding (shrinkage) operator on the components of sparse coding so as to reduce noise. Our method is closely related to the method of wavelet shrinkage, but it has the important benefit over wavelet methods that the representation is determined solely by the statistical properties of the data. The wavelet representation, on the other hand, relies heavily on certain mathematical properties (like self-similarity) that may be only weakly related to the properties of natural data.


Author(s):  
Mustapha Muhammad ◽  
Isyaku Muhammad ◽  
Aisha Muhammad Yaya

In this paper, a new lifetime model called Kumaraswamy exponentiated U-quadratic (KwEUq) distribution is proposed. Several mathematical and statistical properties are derived and studied such as the explicit form of the quantile function, moments, moment generating function, order statistics, probability weighted moments, Shannon entropy and Renyi entropy. We also found that the usual maximum likelihood estimates (MLEs) fail to hold for the KwEUq distribution. Two alternative methods are suggested for the parameter estimation of the KwEUq, the alternative maximum likelihood estimation (AMLE) and modified maximum likelihood estimation (MMLE). Simulation studies were conducted to assess the finite sample behavior of the AMLEs and MMLEs. Finally, we provide application of the KwEUq for illustration purposes.


Sign in / Sign up

Export Citation Format

Share Document