scholarly journals PRESTRESS EFFECT ON THE THERMOMECHANICAL RESPONSE OF VISCOELASTIC CIRCULAR CYLINDRICAL SHELL UNDER HARMONIC LOADING

Author(s):  
Y. Zhuk ◽  
O. Ostos

The problem of forced resonant vibrations and dissipative heating of a hinged viscoelastic elastomeric circular cylindrical shell is considered. The problem statement is based on the use of Kirchhoff–Love hypotheses and the concept of complex modules used to describe the cyclic reaction of a viscoelastic material to a harmonic loading. In the axisymmetric setting, it is assumed that there is a membrane force as a consequence of the applied tensile or prestress. The problem is solved in two stages: first the problem of mechanics is solved, and then for the found amplitudes of kinematic and force characteristics the dissipative function is constructed and both the steady-state and transient thermal problem is solved. As a result of solving the steady-state thermal problem, the amplitude-frequency and temperature-frequency curves are built.

Author(s):  
A. I. Kashpar ◽  
V. N. Laptinskiy

The present paper presents two analytical methods for calculating the steady-state temperature field in a circular cylindrical shell. The effectiveness of the methods in terms of accuracy in comparison with the classical approach, based on Bessel functions, is analyzed. The proposed analytical algorithms contain relatively simple computational operations. Since they do not use special functions, the algorithms can be used to solve a wide range of problems.


Author(s):  
Muhammad Abid ◽  
Javed A. Chattha ◽  
Kamran A. Khan

Performance of a bolted flange joint is characterized mainly by its ‘strength’ and ‘sealing capability’. A number of analytical and experimental studies have been conducted to study these characteristics only under internal pressure loading. In the available published work, thermal behavior of the pipe flange joints is discussed under steady state loading with and without internal pressure and under transient loading condition without internal pressure. The present design codes also do not address the effects of steady state and thermal transient loading on the structural integrity and sealing ability. It is realized that due to the ignorance of any applied transient thermal loading, the optimized performance of the bolted flange joint can not be achieved. In this paper, in order to investigate gasketed joint’s performance i.e. joint strength and sealing capability under combined internal pressure and transient thermal loading, an extensive nonlinear finite element analysis is carried out and its behavior is discussed.


2018 ◽  
Vol 878 ◽  
pp. 3-7
Author(s):  
Vladimir I. Andreev ◽  
Andrey N. Leontiev

The problem of static analysis of a circular cylindrical shell, which is located on elastic Winkler foundation and reinforced by the longitudinal edges are considered. There is rib stiffness of rectangular cross section. Exposure is represented evenly distributed along the longitudinal axis forces. The forces acting on the edges of the rigidity of the upper structure. Agreed that the ends of the envelope is flat, vertical walls, giving the contour of the absolute rigidity in the transverse direction and does not prevent the longitudinal displacement of points of the envelope. To solve the problem, the total moment theory of circular cylindrical shell was used. To implement the proposed algorithm is the calculation of computer program. With the help of the program is executed a number of examples of calculation. In these examples, analyze the impact of stress on the shell of such factors as the relative length and thickness, angle mortar shell, the value of the relative rigidity of airborne elements and other.


Sign in / Sign up

Export Citation Format

Share Document